. Scientific Frontline: 2025

Monday, November 24, 2025

Stroke scientists gather more evidence for presence of ‘gut-brain axis’

Image Credit: Scientific Frontline / stock image

Research on mice by scientists at The University of Manchester has shed new light on why the guts’ immune system changes after a stroke and how it might contribute to gastro-intestinal problems. 

Published in Brain, Behavior and Immunity, the study adds to the emerging idea of the “gut-brain axis” – in which scientists suggest allows communication between the two organs in both health and disease. 

The study casts more light on the biology of stroke, a life-threatening medical emergency that disrupts blood flow to parts of the brain often causing long-term effects to mobility and cognition. 

Stroke patients are also at risk of secondary bacterial infections and often exhibit gastrointestinal symptoms including difficulty swallowing and constipation. 

Genetics: In-Depth Description

Image Credit: Scientific Frontline / stock image

Genetics is the branch of biology concerned with the study of genes, genetic variation, and heredity in organisms. It seeks to understand the molecular mechanisms by which traits are passed from parents to offspring, how the genetic code directs biological functions, and how variations in this code drive evolution and disease. At its core, genetics is the study of biological information: how it is stored, copied, translated, and mutated.

Consciousness as the foundation – new theory of the nature of reality

Maria Strømme, Professor of Materials Science.
Inset Photo Credit: Courtesy of Uppsala University

Consciousness is fundamental; only thereafter do time, space and matter arise. This is the starting point for a new theoretical model of the nature of reality, presented by Maria Strømme, Professor of Materials Science at Uppsala University, in the scientific journal AIP Advances. The article has been selected as the best paper of the issue and featured on the cover. 

Strømme, who normally conducts research in nanotechnology, here takes a major leap from the smallest scales to the very largest – and proposes an entirely new theory of the origin of the universe. The article presents a framework in which consciousness is not viewed as a byproduct of brain activity, but as a fundamental field underlying everything we experience – matter, space, time, and life itself. 

Untreated sleep apnea raises risk of Parkinson’s

 A new study involving millions of electronic health records reveals that untreated obstructive sleep apnea raises the risk of Parkinson’s disease.
Image Credit: Scientific Frontline / AI generated

New research reveals that people with untreated obstructive sleep apnea have a higher risk of developing Parkinson’s disease. However, they can significantly reduce the risk by improving the quality of their sleep by using continuous positive airway pressure, or CPAP.

The study, which published today in the journal JAMA Neurology, examined electronic health records covering more than 11 million U.S. military veterans who received care through the Department of Veterans Affairs between 1999 and 2022.

The research was led by Oregon Health & Science University and the Portland VA Health Care System.

Parkinson’s is a neurodegenerative condition that affects an estimated 1 million people nationwide, with the risk rising incrementally year by year for people over age 60.

Humpback Whales Are Making a Comeback – Here’s One Reason Why

Photo Credit: © Olga Filatova/SDU

When SDU whale researcher Olga Filatova set off on her first field trip in 2000, she spent five years looking for whales before she saw a humpback. 

“It was incredibly rare to spot one back then. Today, we see them almost every day when we’re in the field,” she says. “We don’t know exactly how many humpbacks there are now, but definitely many more than when I started.” 

A cautious estimate from the Endangered Species Coalition puts today’s population at around 80,000—up from just 10,000 at their lowest point. That makes humpbacks one of the great success stories of conservation. 

New clues to why some animals live longer

Sika Zheng
Photo Credit: Courtesy of University of California, Riverside

A collaborative study by scientists at the University of California, Riverside, and University of Southern California reports on how a process known as alternative splicing, often described as “editing” the genetic recipe, may help explain why some mammals live far longer than others.

Published in Nature Communications, the study, which compared alternative RNA processing in 26 mammal species with maximum lifespans ranging from 2.2 to 37 years (>16-fold differences), found that changes in how genes are spliced, more than just how active they are, play a key role in determining maximum lifespan.

Particle accelerator waste could help produce cancer-fighting materials

Photo Credit: Courtesy of University of York

Energy that would normally go to waste inside powerful particle accelerators could be used to create valuable medical isotopes, scientists have found. 

The next step is to explore how the method could be scaled up to deliver clinically use 

Researchers at the University of York have shown that intense radiation captured in particle accelerator “beam dumps” could be repurposed to produce materials used in cancer therapy.  

Scientists have now found a way to make those leftover photons do a second job, without affecting the main physics experiments. 

A beam of photons designed to investigate things like the matter that makes up our universe, could at the same time, be used to create useful medical isotopes in the diagnosis and treatment of cancer. 

Blood protein profiles can predict mortality

Photo Credit: Akram Huseyn

Elevated levels of five proteins in our blood can help predict risk of mortality, a new study from the University of Surrey finds. Scientists believe the proteins (PLAUR, SERPINA3, CRIM1, DDR1 and LTBP2), that play key roles in the development of diseases such as cancer and inflammation, may also contribute to the risk of dying. Findings could help clinicians identify individuals most at risk from mortality and lead to earlier medical interventions.   

The study also discovered 392 proteins associated with an increased risk of death within a 5-year timeframe and a further 377 proteins associated with dying within 10 years, even when adjusting for health and lifestyle factors, such as smoking or pre-existing disease diagnoses. Proteins perform a wide range of essential functions in the body and are vital for growth, development, and the structure of every cell.  

Antarctic mountains could boost ocean carbon absorption

Glaciers transport sediments from Antarctica to the coast.
Photo Credit: Dr Kate Winter, Northumbria University

Research involving scientists from Newcastle University has revealed new hope in natural environmental systems found in Antarctica which could help mitigate the overall rise of carbon dioxide. 

As Antarctica's ice sheets thin due to climate change, newly exposed mountain peaks could significantly increase the supply of vital nutrients to the Southern Ocean which surrounds the continent, potentially enhancing its ability to absorb atmospheric carbon dioxide over long timescales, according to the research published in Nature Communications

Led by Northumbria University, a team of scientists looked at analysis of sediment samples from East Antarctica's Sør Rondane Mountains. They discovered that weathered rocks exposed above the ice surface contain iron concentrations up to ten times higher than previously reported from the Antarctic continent. This bioavailable iron is transported to the ocean by glaciers and icebergs, where it fuels the growth of phytoplankton – microscopic marine organisms that absorb CO₂ through photosynthesis. 

New Artificial Intelligence Model Could Speed Rare Disease Diagnosis

A DNA strand with a highlighted area indicating a mutation
Image Credit: Scientific Frontline

Every human has tens of thousands of tiny genetic alterations in their DNA, also known as variants, that affect how cells build proteins.

Yet in a given human genome, only a few of these changes are likely to modify proteins in ways that cause disease, which raises a key question: How can scientists find the disease-causing needles in the vast haystack of genetic variants?

For years, scientists have been working on genome-wide association studies and artificial intelligence tools to tackle this question. Now, a new AI model developed by Harvard Medical School researchers and colleagues has pushed forward these efforts. The model, called popEVE, produces a score for each variant in a patient’s genome indicating its likelihood of causing disease and places variants on a continuous spectrum.

Why Do We Have a Consciousness?

Albert Newen from the Institute of Philosophy II
Photo Credit: © RUB, Marquard

What is the evolutionary advantage of our consciousness? And what can we learn about this from observing birds? Researchers at Ruhr University Bochum published two articles on this topic. 

Although scientific research about consciousness has enjoyed a boom in the past two decades, one central question remains unanswered: What is the function of consciousness? Why did it evolve at all? The answers to these questions are crucial to understanding why some species (such as our own) became conscious while others (such as oak trees) did not. Furthermore, observing the brains of birds shows that evolution can achieve similar functional solutions to realize consciousness despite different structures. The working groups led by Professors Albert Newen and Onur Güntürkün at Ruhr University Bochum, Germany, report their findings in a current special issue of the journal Philosophical Transactions of the Royal Society B.

Sunday, November 23, 2025

Kleopatra

Image Credit: Scientific Frontline

In the modern digital ecosystem, the email inbox and local file storage remain vulnerable entry points for surveillance, data theft, and unauthorized access. While transport layer security (TLS) protects data in transit, it often leaves the data itself exposed at rest or at the endpoints. For professionals in journalism, law, science, and academia, relying solely on provider-managed security is increasingly insufficient.

The challenge lies in complexity: robust encryption standards like OpenPGP are historically difficult for non-technical users to implement, often requiring cumbersome command-line interactions.

Nasal drops fight brain tumors noninvasively

Researchers at WashU Medicine have developed a noninvasive medicine delivered through the nose that successfully eliminated deadly brain tumors in mice. The medicine is based on a spherical nucleic acid, a nanomaterial (labeled red) that travels along a nerve (green) from the nose to the brain, where it triggers an immune response to eliminate the tumor.
Image Credit: Courtesy of Alexander Stegh

Researchers at Washington University School of Medicine in St. Louis, along with collaborators at Northwestern University, have developed a noninvasive approach to treat one of the most aggressive and deadly brain cancers. Their technology uses precisely engineered structures assembled from nano-size materials to deliver potent tumor-fighting medicine to the brain through nasal drops. The novel delivery method is less invasive than similar treatments in development and was shown in mice to effectively treat glioblastoma by boosting the brain’s immune response.

Glioblastoma tumors form from brain cells called astrocytes and are the most common kind of brain cancer, affecting roughly three in 100,000 people in the U.S. Glioblastoma generally progresses very quickly and is almost always fatal. There are no curative treatments for the disease, in part because delivering medicines to the brain remains extremely challenging.

LJI scientists discover how T cells transform to defend our organs

The new study was led by Pandurangan Vijayanand, M.D., Ph.D., William K. Bowes Distinguished Professor at La Jolla Institute for Immunology
Photo Credit: Courtesy of La Jolla Institute for Immunology

We owe a lot to tissue resident memory T cells (TRM). These specialized immune cells are among the body’s first responders to disease. 

Rather than coursing through the bloodstream—as many T cells do—our TRM cells specialize in defending specific organs. They battle viruses, breast cancer, liver cancer, melanomas, and many other health threats. 

Pandurangan Vijayanand, M.D., Ph.D., William K. Bowes Distinguished Professor at La Jolla Institute for Immunology (LJI), has even shown that a greater density of TRM cells is linked to better survival outcomes in lung cancer patients.

Saturday, November 22, 2025

What Is: Mitochondrion


Evolutionary Singularities and the Eukaryotic Dawn

The mitochondrion represents a biological singularity, a discrete evolutionary event that fundamentally partitioned life on Earth into two distinct energetic stratums: the prokaryotic and the eukaryotic. While colloquially reduced to the moniker of "cellular powerhouse," the mitochondrion is, in functional reality, a highly integrated endosymbiont that serves as the master regulator of eukaryotic physiology. It is the nexus of cellular respiration, the arbiter of programmed cell death, a buffer for intracellular calcium, and a hub for biosynthetic pathways ranging from heme synthesis to steroidogenesis. To comprehend the complexity of multicellular life, one must first dissect the intricate molecular sociology of this organelle.   

The origin of the mitochondrion is the subject of intense phylogenomic reconstruction. The prevailing consensus, the endosymbiotic theory, posits that the mitochondrion descends from a free-living bacterial ancestor—specifically a lineage within the Alphaproteobacteria—that entered into a symbiotic relationship with a host archaeal cell approximately 1.5 to 2 billion years ago. This was not a trivial acquisition but a transformative merger. The energetic capacity afforded by the internalization of a bioenergetic specialist allowed the host cell to escape the surface-area-to-volume constraints that limit prokaryotic genome size, facilitating the expansion of the nuclear genome and the development of complex intracellular compartmentalization. 

Friday, November 21, 2025

Rice engineers show lab grown diamond films can stop costly mineral buildup in pipes

Pulickel Ajayan and Xiang Zhang
Photo Credit: Jeff Fitlow/Rice University

In industrial pipes, mineral deposits build up the way limescale collects inside a kettle ⎯ only on a far larger and more expensive scale. Mineral scaling is a major issue in water and energy systems, where it slows flow, strains equipment and drives up costs.

A new study by Rice University engineers shows that lab-grown diamond coatings could resolve the issue, providing an alternative to chemical additives and mechanical cleaning, both of which offer only temporary relief and carry environmental or operational downsides.

“Because of these limitations, there is growing interest in materials that can naturally resist scale formation without constant intervention,” said Xiang Zhang, assistant research professor of materials science and nanoengineering and a first author on the study alongside Rice postdoctoral researcher Yifan Zhu. “Our work addresses this urgent need by identifying a coating material that can ‘stay clean’ on its own.”

Forensic Science: In-Depth Description

Image Credit: Scientific Frontline / stock image AI

Forensic Science is the rigorous application of scientific principles and methods to matters of criminal and civil law is the rigorous application of scientific principles and methods to matters of criminal and civil law. It serves as the critical intersection between the scientific community and the justice system, tasked with the collection, preservation, and analysis of physical evidence to reconstruct events, identify perpetrators or victims, and establish objective facts for legal proceedings.

Genetic Engineering: Changing the Number of Chromosomes in Plants Using Molecular Scissors

For the first time, KIT researchers managed to reduce the number of chromosomes in a plant by fusing two chromosomes.
Illustration Credit: Michelle Rönspies – KIT

Higher yields, greater resilience to climatic changes or diseases – the demands on crop plants are constantly growing. To address these challenges, researchers at Karlsruhe Institute of Technology (KIT) are developing new methods in genetic engineering. In cooperation with other German and Czech researchers, they succeeded for the first time in leveraging the CRISPR/Cas molecular scissors for changing the number of chromosomes in the Arabidopsis thaliana model organism in a targeted way – without any adverse effects on plant growth. This discovery opens up new perspectives for plant breeding and agriculture.  

Evolutionary Biology: In-Depth Description

Image Credit: Scientific Frontline / stock image

Evolutionary Biology is the sub-discipline of biology that studies the evolutionary processes that produced the diversity of life on Earth, starting from a single common ancestor. These processes include natural selection, common descent, and speciation. It serves as the unifying theory of the biological sciences, providing a framework that explains the unity and diversity of organisms by investigating the changes in the heritable traits of biological populations over successive generations.

An electric discovery: Pigeons detect magnetic fields through their inner ear

Photo Credit: Nancy Hughes

In 1882, the French Naturalist Camille Viguier was amongst the first to propose the existence of a magnetic sense. His speculation proved correct; many animals – from bats to migratory birds and sea turtles use the Earth’s magnetic field to navigate. Yet despite decades of research, scientists still know surprisingly little about the magnetic sense. How do animals detect magnetic fields? Which brain circuits process the information? And where in the body is this sensory system located? 

Viguier audaciously proposed that magnetic sensing might occur in the inner ear relying on the generation of small electric currents. This idea was ignored and then forgotten; a historical musing lost with the passage of time. Now more than a century later it has been resurrected by neuroscientists at LMU in a paper published in Science. A team led by Professor David Keays took an unbiased approach to studying pigeon brains exposed to magnetic fields. 

New stem cell medium creates contracting canine heart muscle cells

Canine iPS cells cultured in a newly developed medium successfully differentiated into functional cardiomyocytes
Image Credit: Osaka Metropolitan University

Scientists obtained stem cells expressing cardiac muscle-specific genes and proteins. The cells displayed regular rhythmic contractions similar to a heart, confirming that they were functional cardiomyocyte cells.

In research, induced pluripotent stem (iPS) cells are derived from skin, urine, or blood samples and developed into other cells, like heart tissue, that researchers want to study. Because of the similarities between certain dog and human diseases, canine iPS cells have potential uses in regenerative medicine and drug discovery. 

How the cheese-noodle principle could help counter Alzheimer's

Jinghui Luo is a researcher at the Center for Life Sciences at the Paul Scherrer Institute PSI. He studies accumulations of so-called amyloid proteins, which lead to nerve damage in the brain. His research aims to help mitigate neurodegenerative diseases such as Alzheimer's and Parkinson's in the long term.  Photo Credit: © Paul Scherrer Institute PSI/Markus Fischer

Researchers at the Paul Scherrer Institute PSI have clarified how spermine – a small molecule that regulates many processes in the body's cells – can guard against diseases such as Alzheimer's and Parkinson's: it renders certain proteins harmless by acting a bit like cheese on noodles, making them clump together. This discovery could help combat such diseases. The study has now been published in the journal Nature Communications.

Our life expectancy keeps rising – and as it does, age-related illnesses, including neurodegenerative diseases such as Alzheimer's and Parkinson's, become increasingly common. These diseases are caused by accumulations in the brain of harmful protein structures consisting of incorrectly folded amyloid proteins. Their shape is reminiscent of fibers or spaghetti. To date, there is no effective therapy to prevent or eliminate such accumulations. 

Thursday, November 20, 2025

Subverting Plasmids To Combat Antibiotic Resistance

Two types of plasmids, colored red and blue, form intricate patterns as they compete for dominance in a bacterial colony.
Image Credit: Fernando Rossine

Researchers in the Blavatnik Institute at Harvard Medical School have just opened a new window into understanding the development of antibiotic resistance in bacteria.

The work not only reveals principles of evolutionary biology but also suggests a new strategy to combat the antibiotic resistance crisis, which kills an estimated 1.3 million people per year worldwide.

Members of the labs of Michael Baym, associate professor of biomedical informatics, and Johan Paulsson, professor of systems biology, devised a way to track the evolution and spread of antibiotic resistance in individual bacteria by measuring competition among plasmids.

Environmental Science: In-Depth Description

Photo Credit: Esa Kaifa

Environmental science is an interdisciplinary academic field that integrates physical, biological, and information sciences to study the environment and identify solutions to environmental problems. By combining disciplines such as ecology, biology, physics, chemistry, plant science, zoology, mineralogy, oceanography, limnology, soil science, geology and physical geography, and atmospheric science, it seeks to understand the complex interactions between the natural world and human societies.

The primary goal of environmental science is to learn how the natural world works, to understand how we interact with the environment, and to determine how we can live sustainably without degrading our life-support system.

Focused Ultrasound Passes First Test in Treatment of Brain Cancer in Children

Pediatric oncologist Stergios Zacharoulis and biomedical engineer Elisa Konofagou are pioneering the use of focused ultrasound to treat brain cancer in children and dozens of other brain diseases
Photo Credit: Rudy Diaz / Columbia University Vagelos College of Physicians and Surgeons.

Columbia University researchers are the first to show that focused ultrasound—a non-invasive technique that uses sound waves to enhance the delivery of drugs into the brain—can be safely used in children being treated for brain cancer.

The focused ultrasound technique, developed by Columbia engineers, was tested in combination with chemotherapy in three children with diffuse midline glioma, a rare and aggressive brain cancer that is universally fatal.

The study found that focused ultrasound successfully opened the blood-brain barrier in all three patients, allowing the chemotherapy drug to reach the tumors and leading to some improvement in patient mobility, though all three patients eventually died from their disease or complications of COVID.

5,500 toxic sites in U.S. at risk of flooding because of sea level rise

U.S. face rising flood risks due to sea-level rise.
Photo Credit: Wes Warren

More than 5,500 hazardous sites across the U.S. are projected to be at risk of coastal flooding by 2100, according to newly published research led by University of California scientists.

The researchers found that if heat-trapping pollution grows unchecked, rising sea levels will flood a wide range of sites, including facilities that handle sewage, toxic waste, oil and gas, and other industrial pollutants, posing serious threats to public health and neighboring communities. The peer-reviewed study — Sea level rise and flooding of hazardous sites in marginalized communities across the United States – was just published in the London-based scientific journal Nature Communications

Innovation turns building vents into carbon-capture devices

A carbon nanofiber-based direct air capture filter developed by the University of Chicago Pritzker School of Molecular Engineering could turn existing building ventilation systems into carbon-capture devices while cutting homeowners’ energy costs. Through life cycle assessment, the air filter shows a carbon removal efficiency of 92.1% from cradle to grave.
Photo Credit: Elaina Eichorn

With a newly developed nanofiber filter, air conditioners, heaters and other HVAC systems could remove airborne carbon dioxide while cutting energy costs

A nanofiber air filter developed at the University of Chicago could turn existing building ventilation into carbon-capture devices while cutting homeowners’ energy costs.

In a paper recently published in Science Advances, researchers from the lab of Asst. Prof. Po-Chun Hsu in the Pritzker School of Molecular Engineering (UChicago PME) developed a distributed carbon nanofiber direct air capture filter that could potentially turn every home, office, school or other building into a small system working toward the global problem of airborne carbon dioxide.

A life-cycle analysis shows that—even after factoring this extra CO2 released by everything from manufacture and transportation to maintenance and disposal—the new filter is more than 92% efficient in removing the gas from the air.

Customised cells to fight brain cancer

Visualisation of cell death induced by CAR-T cells. A real-time imaging experiment (images taken at 0, 5 and 10 minutes) shows a CAR-T cell in contact with a glioblastoma cell (artificially marked in green). This contact causes the CAR-T cell to concentrate granules (lytic granules, shown in pink) containing the proteins necessary for the death of the target cell. These proteins penetrate the cancer cell and induce its death. After 10 minutes, the cancer cell begins to die, as indicated by the loss of its structure (evidenced by the appearance of "bubbles").
Image Credit: © Denis Migliorini

With a five-year survival rate of less than 5%, glioblastoma is one of the most aggressive types of brain cancer. Until now, all available treatments, including immunotherapy — which involves strengthening the immune system to fight cancer— have proved disappointing. CAR-T cells are genetically modified immune cells manufactured in the laboratory and designed to identify and destroy cancer cells. By targeting a protein present in the tumor environment, a team from the University of Geneva (UNIGE) and the Geneva University Hospital (HUG) has developed CAR-T cells capable of destroying glioblastoma cells. Their efficacy in an animal model of the disease paves the way for clinical trials in humans. These results are published in the Journal for ImmunoTherapy of Cancer

New type of DNA damage found in our cells’ powerhouses

Linlin Zhao (left) and Yu Hsuan Chen
Photo Credit: Courtesy of University of California, Riverside

A previously unknown type of DNA damage in the mitochondria, the tiny power plants inside our cells, could shed light on how our bodies sense and respond to stress. The findings of the UC Riverside-led study are published in the Proceedings of the National Academy of Sciences and have potential implications for a range of mitochondrial dysfunction-associated diseases, including cancer and diabetes. 

Mitochondria have their own genetic material, known as mitochondrial DNA (mtDNA), which is essential for producing the energy that powers our bodies and sending signals within and outside cells. While it has long been known that mtDNA is prone to damage, scientists didn't fully understand the biological processes. The new research identifies a culprit: glutathionylated DNA (GSH-DNA) adducts.

An adduct is bulky chemical tag formed when a chemical, such as a carcinogen, attaches directly to DNA. If the damage isn’t repaired, it can lead to DNA mutations and increase the risk of disease.

‘Worms in space’ experiment aims to investigate the biological effects of spaceflight

Petri Pod
Photo Credit: University of Exeter

A crew of tiny worms will be heading on a mission to the International Space Station in 2026 that will help scientists understand how humans can travel through space safely, using a Leicester-built space pod. The experiment is based upon a concept and early development by the University of Exeter over more than 8 years 

A team of scientists and engineers at Space Park Leicester, the University of Leicester’s pioneering £100 million science and innovation park, have designed and built a miniature space laboratory called a Petri Pod, based around the principle of the biological culture petri dish invented in 1887 and based upon earlier development work by the University of Exeter and Leicester, that will allow scientists on Earth to study biological organisms in space. 

There is a burgeoning global drive for humans to colonize space, the Moon, and other planets of our Solar System, but one of the challenges is the harmful effects of extended exposure to the effects of the space environment on human physiology. This includes microgravity which can lead to bone and muscle loss, fluid shift, and vision problems in humans as well as radiation-induced effects of genetic damage, increased cancer risk, etc. 

Rocks on Faults Can Heal Following Seismic Movement

At the Cascadia subduction zone in the Pacific Northwest, one tectonic plate is moving underneath another. New experimental work at UC Davis shows how rocks on faults deep in the Earth can cement themselves back together after a seismic movement, adding to our knowledge of how these faults behave.
Photo Credit: of Otter Rock, Oregon by USGS

Earthquake faults deep in the Earth can glue themselves back together following a seismic event, according to a new study led by researchers at the University of California, Davis. The work, published in Science Advances and supported by grants from the National Science Foundation, adds a new factor to our understanding of the behavior of faults that can give rise to major earthquakes. 

“We discovered that deep faults can heal themselves within hours,” said Amanda Thomas, professor of earth and planetary sciences at UC Davis and corresponding author on the paper. “This prompts us to reevaluate fault rheological behavior, and if we have been neglecting something very important.” 

How plants search for nutrients

In the case of nutrient deficiency, efficient plants are able to grow long, lateral roots to broaden the radius from which they can take nutrients.
Photo Credit: Andreas Heddergott / Technische Universität München

What makes plants tolerant to nutrient fluctuations? An international research team led by the Technical University of Munich (TUM) and involving the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) has investigated this question on the micronutrient boron. The researchers analyzed 185 gene data sets from the model plant Arabidopsis. Their goal is to then be able to transfer the findings to the important crop plant rapeseed. 

Boron is one of the key micronutrients for the growth and fertility of many plants. However, extreme weather events reduce the availability of this nutrient: drought reduces boron uptake, while flooding washes the nutrient out of the soil – less boron reaches the plants. In the context of climate change, this deficiency represents an additional stressor for plants. Their tolerance to these fluctuations is a decisive factor in determining their yields. 

Study shows waste cardboard is effective for power generation

Photo Credit: Jon Moore

A new study has shown for the first time that waste cardboard can be used as an effective source of biomass fuel for large scale power generation. 

Engineers from the University of Nottingham have provided the first comprehensive characterization of cardboard as a potential fuel source and created a new method to assess the composition of the material providing a practical tool for fuel assessment for cardboards. The study has been published in the journal Biomass and Bioenergy

Wednesday, November 19, 2025

Human biology is ill-adapted to modern cities

A new study has found that modern cities are having a huge impact on our health and wellbeing.
Photo Credit: Patrick Robert Doyle

Researchers from Loughborough University and the University of Zurich found that rapid industrialization has reshaped human habitats so dramatically that our biology may no longer be able to keep up. 

The paper, published in Biological Reviews, highlights that densely populated, polluted, and industrialized environments are impairing core biological functions essential for survival and reproduction (i.e., the ‘evolutionary fitness’ of our species). 

Scientists observe metabolic activity of individual lipid droplets in real time

LipiPB Red shows longer fluorescence lifetimes in stable lipid droplets (red) and shorter lifetimes as they undergo degradation (blue). This probe revealed that lipid droplets sequentially degrade, where lipolysis precedes lipophagy.
Image Credit: Issey Takahashi, Nagoya University

A research team has developed a fluorescent probe that allows scientists to visualize how individual lipid droplets break down inside living cells in real time. The probe changes its fluorescence properties depending on the chemical composition of each droplet, which allows researchers to observe not only their location within cells, but also their metabolic activity during lipid breakdown. The findings, published in the Journal of the American Chemical Society, may contribute to the development of new strategies to treat metabolic diseases such as obesity and diabetes, as well as cancers associated with abnormal lipid metabolism. 

“Lipid droplets are cellular organelles that not only store excess lipids but also play critical roles in lipid metabolism. However, understanding how individual droplets function has been challenging,” Professor Shigehiro Yamaguchi, from the Institute of Transformative Bio-Molecules (ITbM) at Nagoya University, explained. 

Extending the Lifespan of Electrocatalysts

The image shows the nanosized atom probe tomography specimens on a silicon microtip coupon.
Photo Credit: © Tong Li

A research team has discovered how to keep a cobalt-based oxide electrocatalyst active and stable. The element chromium plays a crucial role in this process.  

Although chromium itself is not an active element, its continuous dissolution enables a reversible surface transformation that keeps the Co-Cr spinel oxide electrocatalyst active and stable. This could significantly improve the efficiency of hydrogen production. These findings stem from researchers at Ruhr University Bochum, Germany, the Max Planck Institutes for Sustainable Materials in Düsseldorf and for Coal Research in Mülheim, Forschungszentrum Jülich and the Helmholtz Institute for Renewable Energies in Erlangen-Nürnberg. They report their results in the journal Nature Communications

Seeing infrared with organic electrodes

Organic electrodes
Electrophysiological recording of retinal activity on a precision setup using controlled red-light conditions that do not alter the retina’s response. The experiment captures how the retina reacts to infrared photovoltaic stimulation
Photo Credit: Technische Universität Wien

In some people, the light receptors on the retina are damaged, but the underlying nerve structure is still intact. In this case, a visual implant could potentially help in the future: Biocompatible, thin photovoltaic films register radiation, convert it into electrical signals, and use these to stimulate living nerve tissue. This has now been achieved for the first time in laboratory tests at TU Wien. 

Tuesday, November 18, 2025

Microplastics hit male arteries hard

Changcheng Zhou Professor, Biomedical Sciences
Photo Credit: Courtesy of University of California, Riverside

A mouse study led by University of California, Riverside biomedical scientists suggests that everyday exposure to microplastics — tiny fragments shed from packaging, clothing, and countless plastic products — may accelerate the development of atherosclerosis, the artery-clogging process that leads to heart attacks and strokes. The harmful effects were seen only in male mice, offering new clues about how microplastics may affect cardiovascular health in humans.

“Our findings fit into a broader pattern seen in cardiovascular research, where males and females often respond differently,” said lead researcher Changcheng Zhou, a professor of biomedical sciences in the UCR School of Medicine. “Although the precise mechanism isn’t yet known, factors like sex chromosomes and hormones, particularly the protective effects of estrogen, may play a role.”

Researchers link Antarctic ice loss to ‘storms' at the ocean's subsurface

Mattia Poinelli, a UC Irvine postdoctoral scholar in Earth system science and NASA JPL research affiliate, outlines in a newly published study the impact of submesoscale events – small, subsurface ocean eddies and vortices – on Antarctica’s ice sheets. “Despite being largely overlooked in the context of ice-ocean interactions,” he says, “[they] are among the primary drivers of ice loss.”
Photo Credit: Steve Zylius / UC Irvine

Researchers at the University of California, Irvine and NASA’s Jet Propulsion Laboratory have identified stormlike circulation patterns beneath Antarctic ice shelves that are causing aggressive melting, with major implications for global sea level rise projections.

In a paper published recently in Nature Geoscience, the scientists say their study is the first to examine ocean-induced ice shelf melting events from a weather timescale of just days versus seasonal or annual timeframes. This enabled them to match “ocean storm” activity with intense ice melt at Thwaites Glacier and Pine Island Glacier in the climate change-threatened Amundsen Sea Embayment in West Antarctica.

The research team relied on climate simulation modeling and moored observation tools to gain 200-meter-resolution pictures of submesoscale ocean features between 1 and 10 kilometers across, tiny in the context of the vast ocean and huge slabs of floating ice in Antarctica.

Researchers build bone marrow model entirely from human cells

Scanning electron microscopy image of the engineered 3D bone marrow tissue colonized with human blood cells (red).
Image Credit: Andrés García-García, University of Basel, Department of Biomedicine

Our body’s “blood factory” consists of specialized tissue made up of bone cells, blood vessels, nerves and other cell types. Now, researchers have succeeded for the first time in recreating this cellular complexity in the laboratory using only human cells. The novel system could reduce the need for animal experiments for many applications.

The bone marrow usually works quietly in the background. It only comes into focus when something goes wrong, such as in blood cancers. In these cases, understanding exactly how blood production in our body works, and how this process fails, becomes critical. 

Typically, bone marrow research relies heavily on animal models and oversimplified cell cultures in the laboratory. Now, researchers from the Department of Biomedicine at the University of Basel and University Hospital Basel have developed a realistic model of bone marrow engineered entirely from human cells. This model may become a valuable tool not only for blood cancer research, but also for drug testing and potentially for personalized therapies, as reported by a team of researchers led by Professor Ivan Martin and Dr Andrés García-García in the journal Cell Stem Cell

Floating solar panels show promise, but environmental impacts vary by location

The Canoe Brook Floating Solar Photovoltaic (FPV) project, the largest in the United States at the time of completion at 8.9 MW, is located on a water storage reservoir is New Jersey.
Photo Credit Prateek Joshi / NREL

Floating solar panels are emerging as a promising clean energy solution with environmental benefits, but a new study finds those effects vary significantly depending on where the systems are deployed.

Researchers from Oregon State University and the U.S. Geological Survey modeled the impact of floating solar photovoltaic systems on 11 reservoirs across six states. Their simulations showed that the systems consistently cooled surface waters and altered water temperatures at different layers within the reservoirs. However, the panels also introduced increased variability in habitat suitability for aquatic species.

“Different reservoirs are going to respond differently based on factors like depth, circulation dynamics and the fish species that are important for management,” said Evan Bredeweg, lead author of the study and a former postdoctoral scholar at Oregon State. “There’s no one-size-fits-all formula for designing these systems. It’s ecology - it’s messy.”

A new way to trigger responses in the body

Photo Credit: Courtesy of University of Tokyo

Researchers at the University of Tokyo developed an experimental method to induce a strong physiological response linked to psychological pressure by making participants aim for a streak of success in a task. Their findings suggest this approach reproduces pressurelike conditions in a laboratory setting more effectively than traditional methods, affording easier access to the study of this state. That in turn could open up research into how pressure influences human performance in physical and intellectual tasks.

Whether in an exam hall or on the field, to “crack” under pressure is a common trope. But what’s the reality behind this idea? It’s easy to assume that with greater pressure comes greater chance of losing your composure. To know, then, how to overcome this could yield greater performance benefits. But the path to study such ideas is far from simple. Being rigorous in the field of psychology is extremely difficult, as there are limitless factors that can impact different people in different ways. Previous experimental methods have been limited in that they failed to induce strong physiological arousal.

Monday, November 17, 2025

SwRI turbocharges its hydrogen-fueled internal combustion engine

SwRI has a multidisciplinary team dedicated to Hydrogen Energy Research initiatives to deploy decarbonization technologies across a broad spectrum of industries. In 2022, SwRI began modifying a heavy-duty natural gas-fueled engine to run on 100% hydrogen fuel, successfully demonstrated in 2024. SwRI continues to research, design and innovate on H2-ICE technology. 
Photo Credit: Southwest Research Institute

Southwest Research Institute (SwRI) has upgraded its hydrogen-powered heavy-duty internal combustion engine (H2-ICE) with a state-of-the-art turbocharger. The upgrades have significantly improved performance across the board, making the engine competitive with current long-haul diesel engines focused on fuel economy while maintaining near-zero tailpipe emissions.

In 2023, SwRI converted a traditional natural gas-fueled internal combustion engine to run solely on hydrogen fuel with minimal modifications. It was integrated into a Class-8 truck as part of the Institute’s H2-ICE project to demonstrate a cost-efficient hydrogen-fueled engine as an option for zero-tailpipe carbon dioxide heavy-duty transportation.

Entomology: In-Depth Description

Photo Credit: Lidia Stawinska

Entomology is the scientific study of insects, a branch of zoology. Its primary goals are to understand the biology, behavior, physiology, ecology, evolution, and classification of insects, as well as their interactions with humans, other organisms, and the environment.

A new angle of study for unveiling black hole secrets

The balloon-borne telescope XL-Calibur was launched on a six-day flight from the Swedish Space Corporation’s Esrange Space Center in July 2024. During that flight, the telescope took measurements from the black hole Cygnus X-1, located about 7,000 light-years away. WashU researchers will use those results to improve computer models for simulating and uncovering further mysteries of black holes.
Photo Credit: NASA/SSC

An international collaboration of physicists including researchers at Washington University in St. Louis has made measurements to better understand how matter falls into black holes and how enormous amounts of energy and light are released in the process.

The scientists pointed a balloon-borne telescope called XL-Calibur at a black hole, Cygnus X-1, located about 7,000 light-years from Earth. “The observations we made will be used by scientists to test increasingly realistic, state-of-the-art computer simulations of physical processes close to the black hole,” said Henric Krawczynski, the Wilfred R. and Ann Lee Konneker Distinguished Professor in Physics and a fellow at WashU’s McDonnell Center for the Space Sciences.

Disrupting bacterial "chatter" to improve human health

Computer-rendered split image of bacteria on a tooth surface. When microbial communication is “on”, disease-associated species grow (left). Disrupting this communication (right) promotes health-associated bacteria.
Image Credit: University of Minnesota

Like all living things, bacteria adapt to survive. Over time, bacteria have been developing resistance to common antibiotics and disinfectants, which poses a growing problem for healthcare and sanitation. However, many species of bacteria are beneficial and even essential for human health. What if there was a way to change the behavior of bacteria in the body to prevent illness and poor health outcomes? 

Bacteria are very “talkative.” Constant streams of communication, known as quorum sensing, occur between and among the 700 species of bacteria that live in a human mouth. A number of them communicate via special molecules called N-acyl homoserine lactones (AHLs). 

Wastewater from most countries favors non-resistant bacteria

Joakim Larsson, Professor at the Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, and director of CARe, Centre for Antibiotic Resistance Research.
Photo Credit: Johan Wingborg

A global study led by researchers at the Centre for Antibiotic Resistance Research (CARe) in Gothenburg, Sweden shows that municipal wastewater is not always the breeding ground for antibiotic resistance it is often thought to be. By testing wastewater from 47 countries, the team found that while some samples could select for resistant E. coli, the majority instead selected against resistance. These insights reshape our understanding of when and where resistance is likely to evolve and spread. 

Municipal wastewater contains a large range of excreted antibiotics and has therefore long been suspected to be a spawning ground for antibiotic-resistant bacteria. Now, a study published in Nature Communications led by a team from the University of Gothenburg provides a more nuanced picture. 

Two-step flash Joule heating method recovers lithium‑ion battery materials quickly and cleanly

(From left) Shichen Xu, James Tour, Alex Lathem, Karla Silva and Ralph Abdel Nour.
Photo Credit: Jared Jones/Rice University

A research team at Rice University led by James Tour has developed a two-step flash Joule heating-chlorination and oxidation (FJH-ClO) process that rapidly separates lithium and transition metals from spent lithium-ion batteries. The method provides an acid-free, energy-saving alternative to conventional recycling techniques, a breakthrough that aligns with the surging global demand for batteries used in electric vehicles and portable electronics.

Published in Advanced Materials, this research could transform the recovery of critical battery materials. Traditional recycling methods are often energy intensive, generate wastewater and frequently require harsh chemicals. In contrast, the FJH-ClO process achieves high yields and purity of lithium, cobalt and graphite while reducing energy consumption, chemical usage and costs.

“We designed the FJH-ClO process to challenge the notion that battery recycling must rely on acid leaching,” said Tour, the T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering. “FJH-ClO is a fast, precise way to extract valuable materials without damaging them or harming the environment.”

Oral insulin delayed onset of type 1 diabetes in some children with increased risk of the disease

Half of the participants received daily treatment with oral insulin, and the other half received placebo.
 Photo Credit: Kennet Ruona

An international team of researchers has investigated whether oral insulin can prevent early signs of type 1 diabetes and clinical diagnosis in children with an increased risk of developing the disease. Although treatment with oral insulin could not prevent development of diabetes-related autoantibodies, oral insulin delayed the rate of disease progression in children who developed such autoantibodies. The results from the POInT study are now published in The Lancet

The POInT study has investigated whether treatment with oral insulin can prevent diabetes-related autoantibodies and type 1 diabetes in children with an increased genetic risk of developing the disease. These autoantibodies are used as biomarkers for type 1 diabetes, and the presence of two or more autoantibodies is called early-stage type 1 diabetes. The international study includes 1,050 children from Sweden, Germany, Poland, Belgium and the United Kingdom. Half of the participants received daily treatment with oral insulin, and the other half received placebo during their first three years of life. In type 1 diabetes, the body’s immune system attacks the insulin-producing beta cells in the pancreas and destroys them. 

Featured Article

Researchers link Antarctic ice loss to ‘storms' at the ocean's subsurface

Mattia Poinelli, a UC Irvine postdoctoral scholar in Earth system science and NASA JPL research affiliate, outlines in a newly published stu...

Top Viewed Articles