. Scientific Frontline: 2025

Wednesday, October 22, 2025

Researchers Explore How AI Could Shape the Future of Student Learning

Johns Hopkins study reveals the strengths and pitfalls of incorporating chatbots into middle and high school classrooms as a 'co-tutor'
Image Credit: Scientific Frontline / AI generated

As students settle into the new school year, one question looms large: How will artificial intelligence tools like ChatGPT affect their learning? Seeking answers, a team from Johns Hopkins recently introduced a chatbot into a classroom of middle and high school students to act as a co-tutor and study the impact.

The pilot study included 22 students enrolled in the Johns Hopkins Center for Talented Youth's online course Diagnosis: Be the Doctor. It involved two virtual classrooms; both were taught by the same instructor and organized similarly, except for one key difference: Students in one classroom had access to a large language model designed to act like a coach, asking Socratic-style questions as students worked through medical case studies.

Dangerous E. coli strain blocks gut’s defense mechanism to spread infection

Isabella Rauch, Ph.D., is the senior author on a new study published in Nature that reveals how a dangerous strain of E. coli blocks the body’s immune defenses to spread infection.
Photo Credit: OHSU/Christine Torres Hicks

When harmful bacteria that cause food poisoning, such as E. coli, invade through the digestive tract, gut cells usually fight back by pushing infected cells out of the body to stop the infection from spreading.

In a new study published today in Nature, scientists from Genentech, a member of the Roche Group, in collaboration with researchers from Oregon Health & Science University, discovered that a dangerous strain of E. coli — known for causing bloody diarrhea — can block this gut defense, allowing the bacteria to spread more easily.

The bacteria inject a special protein called NleL into gut cells, which breaks down key enzymes, known as ROCK1 and ROCK2, that are needed for infected cells to be expelled. Without this process, the infected cells can’t leave quickly, allowing the bacteria to spread more easily.

Neutrinos ‘flavor’ may hold clues to the universe’s biggest secrets

Inside the Super-Kamiokande detector.
Photo Credit: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo.

In a new analysis, physicists provide the most precise picture yet of how neutrinos change ‘flavor’ as they travel through the cosmos. 

Neutrinos are fundamental particles of the universe, but also some of the most elusive; They pass through everything and can be extremely difficult to detect. While many of their properties are mysterious, scientists know neutrinos come in three types: electron, muon, and tau. 

Understanding these different identities can help scientists learn more about neutrino masses and answer key questions about the evolution of the universe, including why matter came to dominate over antimatter in the early universe, said Zoya Vallari, 

New observation method improves outlook for lithium metal battery

Stacey Bent (left), professor of chemical engineering and of energy science and engineering, Sanzeeda Baig Shuchi (right), chemical engineering PhD student, and Yi Cui (not pictured), professor of materials science and engineering and of energy science and engineering, led the research team that discovered a way to more accurately analyze key chemistries for rechargeable batteries and possibly many other chemistry applications.
Photo Credit: Bill Rivard

Stanford researchers developed a flash-freezing observation method that reveals battery chemistry without altering it, providing new insights to enhance lithium metal batteries.

In science and everyday life, the act of observing or measuring something sometimes changes the thing being observed or measured. You may have experienced this “observer effect” when you measured the pressure of a tire and some air escaped, changing the tire pressure. In investigations of materials involved in critical chemical reactions, scientists can hit the materials with an X-ray beam to reveal details about composition and activity, but that measurement can cause chemical reactions that change the materials. Such changes may have significantly hampered scientists learning how to improve – among many other things – rechargeable batteries.

To address this, Stanford University researchers have developed a new twist to an X-ray technique. They applied their new approach by observing key battery chemistries, and it left the observed battery materials unchanged and did not introduce additional chemical reactions. In doing so, they have advanced knowledge for developing rechargeable lithium metal batteries. This type of battery packs a lot of energy and can be recharged very quickly, but it short-circuits and fails after recharging a handful of times. The new study, published today in Nature, also could advance the understanding of other types of batteries and many materials unrelated to batteries.

Fungal secrets of a sunken ship

Robert Blanchette, a professor at the University of Minnesota, and Claudia Chemello, president and co-founder of Terra Mare Conservation, examine the wood of the USS Cairo.
Photo Credit: Paul Mardikian

University of Minnesota researchers studied the microbial degradation of the USS Cairo, one of the first ironclad and steam powered gunboats used in the United States Civil War. Studies of microbial degradation of historic woods are essential to help protect and preserve important cultural artifacts. 

Built in 1861, the ship hit a torpedo and sank in December 1862 and was recovered about 100 years later from the Yazoo River. It's been on display at the Vicksburg National Military Park in Mississippi. Although the ship has a canopy cover, it is exposed to environmental elements. 

Retreating Glaciers May Send Fewer Nutrients to the Ocean

Northwestern Glacier in Alaska has retreated approximately 15 kilometers (nine miles) since 1950.
Photo Credit: Kiefer Forsch/Scripps Institution of Oceanography.

The cloudy, sediment-laden meltwater from glaciers is a key source of nutrients for ocean life, but a new study suggests that as climate change causes many glaciers to shrink and retreat their meltwater may become less nutritious. 

Led by scientists at UC San Diego’s Scripps Institution of Oceanography, the study finds that meltwater from a rapidly retreating Alaskan glacier contained significantly lower concentrations of the types of iron and manganese that can be readily taken up by marine organisms compared to a nearby stable glacier. These metals are scarce in many parts of the ocean including the highly productive Gulf of Alaska, and they are also essential micronutrients for phytoplankton, the microorganisms that form the base of most marine food webs.

Dusty air is rewriting your lung microbiome

UCR researcher collecting dust from the Salton Sea.
Photo Credit: Linton Freund/UCR

Dust from California’s drying Salton Sea doesn’t just smell bad. Scientists from UC Riverside found that breathing the dust can quickly re-shape the microscopic world inside the lungs. 

Genetic or bacterial diseases have previously been shown to have an effect on lung microbes. However, this discovery marks the first time scientists have observed such changes from environmental exposure rather than a disease. 

Published in the journal mSphere, the study shows that inhalation of airborne dust collected close to the shallow, landlocked lake alters both the microbial landscape and immune responses in mice that were otherwise healthy.

“Even Salton Sea dust filtered to remove live bacteria or fungi is altering what microbes survive in the lungs,” said Mia Maltz, UCR mycologist and lead study author. “It is causing deep changes to our internal environment.”

Microbes at Red Sea vents show how life and geology shape each other

Microscopic images of the studied microbes.
Image Credit: Courtesy of King Abdullah University of Science and Technology

A new study led by King Abdullah University of Science and Technology (KAUST) Professor Alexandre Rosado has revealed an unusual microbial world in the Hatiba Mons hydrothermal vent fields of the central Red Sea, a site first discovered by one of his co-authors and colleagues, Assistant Professor Froukje M. van der Zwan. 

Published in Environmental Microbiome, the study delivers the first "genome-resolved" analysis of these hydrothermal systems, providing an unprecedented view into both the types of microbes present and the metabolic functions that sustain them. 

“Microbes from the Hatiba Mons fields show remarkable metabolic versatility,” said KAUST Ph.D. student and lead author of the study, Sharifah Altalhi. “By understanding their functions, we can see how life shapes its environment, and how geology and biology are deeply intertwined in the Red Sea.” 

Scientists discover clean and green way to recycle Teflon®

The Newcastle research team (L-R): Dr Matthew Hopkinson, Dr Roly Armstrong and Matthew Lowe.
Photo Credit: Courtesy of Newcastle University

New research demonstrates a simple, eco-friendly method to break down Teflon® – one of the world’s most durable plastics – into useful chemical building blocks.

Scientists from Newcastle University and the University of Birmingham have developed a clean and energy-efficient way to recycle Teflon® (PTFE), a material best known for its use in non-stick coatings and other applications that demand high chemical and thermal stability.

The researchers discovered that waste Teflon® can be broken down and repurposed using only sodium metal and mechanical energy – movement by shaking - at room temperature and without toxic solvents.

Publishing their findings today (22 October) in the Journal of the American Chemical Society (JACS), researchers reveal a low-energy, waste-free alternative to conventional fluorine recycling.

Carpenter Ants: Better Safe than Sorry

Camponotus maculatus
Photo Credit: April Nobile
(CC BY-SA 4.0)

Carpenter ants are not squeamish when it comes to caring for the wounded. To minimize the risk of infection, the insects immediately amputate injured legs – thereby more than doubling their survival rate.

As with humans, wound care plays an important role in the animal kingdom. Many mammals lick their wounds, some primates use antiseptic plants, and some ants even produce their own antimicrobial substances to treat infections. 

The latter was demonstrated by biologist Dr. Erik Frank, a researcher at Julius-Maximilians-Universität Würzburg (JMU), in the African Matabele Ant. In a new study, now published in the journal Proceedings of the Royal Society B, he takes a closer look at an ant species that uses a less refined but nevertheless effective approach: amputation.   

Erik Frank heads a junior research group in Würzburg funded by the Emmy Noether Programme of the German Research Foundation (DFG) at the Chair of Animal Ecology and Tropical Biology (Zoology III). 

Tuesday, October 21, 2025

Arctic in Transition: Greenland’s Caves Preserve Ancient Climate Archive

Inside the Cove Cave, northern Greenland: A team of Innsbruck scientists studies deposits from a time when the Arctic was much warmer than today.
Photo Credit: Robbie Shone

In a remote cave in northern Greenland, a research team led by geologists Gina Moseley, Gabriella Koltai, and Jonathan Baker have discovered evidence of a significantly warmer Arctic. The cave deposits show that the region was free of permafrost millions of years ago and responded sensitively to rising temperatures. The findings, published in Nature Geoscience, provide new insights into past climate conditions and their relevance for today’s climate protection efforts.

Understanding Earth’s climate during earlier warm periods is key to predicting how it may change in the future. One particularly revealing time is the Late Miocene, which began about 11 million years ago. During this period, Earth’s distribution of land and ocean was similar to today, and both temperatures and atmospheric CO₂ levels were comparable to projections for the coming decades. Although the Arctic is known to be highly sensitive to climate change, its environmental conditions during the Late Miocene have remained poorly understood.

Increasing Heat is Super-Charging Arctic Climate and Weather Extremes

Photo Credit: Master Unknown

By evaluating historical climate records, observational and projection data, an international team of researchers found a “pushing and triggering” mechanism that has driven the Arctic climate system to a new state, which will likely see consistently increased frequency and intensity of extreme events across all system components – the atmosphere, ocean and cryosphere – this century.

“We know that mean temperatures are rising, and the Arctic is commonly considered an indicator of global changes due to its higher sensitivity to any perturbation of external and internal forcings,” says Xiangdong Zhang, research professor at North Carolina State University and senior scientist at the North Carolina Institute for Climate Studies.

“The annual mean warming rate of the Arctic is more than three times the global average – this is known as Arctic amplification,” Zhang says. “But no systematic review has been done about the interplay of warmer temperatures with the dynamics of atmosphere, ocean and sea ice in weather and climate extremes around the Arctic.” Zhang is the lead author of the study.

Tropical rivers emit less greenhouse gases than previously thought

Lowland tropical rivers emit large quantities of greenhouse gases, with rates influenced by seasonal flooding.
Photo Credit: Jenny Davis

Tropical inland waters don’t produce as many greenhouse gas emissions as previously estimated, according to the results of an international study, led by Charles Darwin University and involving researchers from Umeå University.

The study, published in Nature Water, aimed to better understand greenhouse gas emissions in tropical rivers, lakes and reservoirs by collating the growing amount of observations from across the world’s tropics – including many systems that were previously less represented in global datasets.

Researchers from Umeå University played a key role in the work, estimating the surface area of rivers and contributing to the data analysis that underpins the study’s findings.

How Hard Is It to Dim the Sun

An illustration of climate geoengineering techniques, including stratospheric aerosol injection (SAI), cirrus cloud thinning (CCT), and marine cloud brightening (MCB), and their proposed delivery systems and potential impacts. Natural stratospheric aerosol release from a volcanic eruption is also shown for context. Surface albedo geoengineering (SAG), which is based on increasing the albedo of various surfaces, is also represented with two examples: installing white roofs on urban buildings and modifying plants and shrubs surface.
Image Credit: Licensed under Creative Commons.

Once considered a fringe idea, the prospect of offsetting global warming by releasing massive quantities of sunlight-reflecting particles into Earth’s atmosphere is now a matter of serious scientific consideration. Hundreds of studies have modeled how this form of solar geoengineering, known as stratospheric aerosol injection (SAI), might work. There is a real possibility that nations or even individuals seeking a stopgap solution to climate change may try SAI—but the proponents dramatically underestimate just how difficult and complicated it will be, say researchers from Columbia University.

“Even when simulations of SAI in climate models are sophisticated, they’re necessarily going to be idealized. Researchers model the perfect particles that are the perfect size. And in the simulation, they put exactly how much of them they want, where they want them. But when you start to consider where we actually are, compared to that idealized situation, it reveals a lot of the uncertainty in those predictions,” says V. Faye McNeill, an atmospheric chemist and aerosol scientist at Columbia’s Climate School and Columbia Engineering.

Exotic roto-crystals

Spontaneous fragmentation of a rotating crystal comprised of transversely interacting particles into multiple rotating crystal fragments.
Image Credit: Wayne State University/Zhi-Feng Huang

It sounds bizarre, but they exist: crystals made of rotating objects. Physicists from Aachen, Düsseldorf, Mainz and Wayne State (Detroit, USA) have jointly studied these exotic objects and their properties. They easily break into individual fragments, have odd grain boundaries and evidence defects that can be controlled in a targeted fashion. In an article published in the Proceedings of the National Academy of Sciences, the researchers outline how several new properties of such “transverse interaction” systems can be predicted by applying a comprehensive theory.

“Transverse forces” can occur in synthetic systems, such as in certain magnetic solids. They exist in systems of living organisms too, however. In an experiment observing a host of starfish embryos conducted at American university MIT, it was found that, through their swimming movements, the embryos influence each other in a manner leading them to rotate around one another. What biological function this may have is not yet understood. The common thread in these systems is that they involve rotating objects.

Nanopore signals, machine learning unlocks new molecular analysis tool

Illustration of voltage-matrix nanopore profiling. The artistic rendering depicts proteins (colored shapes) being analyzed by solid-state nanopores under varying voltage conditions. By combining nanopore signals with machine learning, researchers can discriminate protein mixtures and detect changes in molecular populations.
Image Credit: ©2025 Sotaro Uemura, The University of Tokyo

Understanding molecular diversity is fundamental to biomedical research and diagnostics, but existing analytical tools struggle to distinguish subtle variations in the structure or composition among biomolecules, such as proteins. Researchers at the University of Tokyo have developed a new analytical approach, which helps overcome this problem. The new method, called voltage-matrix nanopore profiling, combines multivoltage solid-state nanopore recordings with machine learning for accurate classification of proteins in complex mixtures, based on the proteins’ intrinsic electrical signatures.

The study, published in Chemical Science, demonstrates how this new framework can identify and classify “molecular individuality” without the need for labels or modifications. The research holds promise of providing a foundation that could lead to more advanced and wider applications of molecular analysis in various areas, including disease diagnosis.

Canopy walkways provide a safe way for rainforest mammals to cross the forest

A canopy walkway at the Amazon Conservatory for Tropical Studies (ACTS) Field Station in the Napo-Sucusari Biological Reserve, located 40 miles outside of Iquitos, Peru.
Photo Credit: Courtesy of the researchers / Binghamton University

Look up in the woods and you may see a familiar sight: squirrels using tree limbs like a leafy highway, crossing a patch of land without putting their paws on the ground.

That’s true in the Amazon rainforest as well. A new study published by Binghamton University biologists in the journal Neotropical Biology and Conservation offers insights for the first time into how arboreal species use human-made canopy structures.

Authored by environmental studies alumnus Justin Santiago ’21, now in a master’s program at Miami University, and Binghamton University Assistant Professor of Biological Sciences Lindsey Swierk, “Arboreal mammal use of canopy walkway bridges on an Amazonian forest with continuous canopy cover” focuses on research conducted at the Amazon Conservatory for Tropical Studies (ACTS) Field Station in the Napo-Sucusari Biological Reserve, located 40 miles outside of Iquitos, Peru.

The key to why the universe exists may lie in an 1800s knot idea science once dismissed

The model suggests a brief “knot-dominated era,” when these tangled energy fields outweighed everything else, a scenario that could be probed through gravitational-wave signals.
Image Credit: Courtesy of Muneto Nitta/Hiroshima University

In 1867, Lord Kelvin imagined atoms as knots in the aether. The idea was soon disproven. Atoms turned out to be something else entirely. But his discarded vision may yet hold the key to why the universe exists.

Now, for the first time, Japanese physicists have shown that knots can arise in a realistic particle physics framework, one that also tackles deep puzzles such as neutrino masses, dark matter, and the strong CP problem. Their findings, in Physical Review Letters, suggest these “cosmic knots” could have formed and briefly dominated in the turbulent newborn universe, collapsing in ways that favored matter over antimatter and leaving behind a unique hum in spacetime that future detectors could listen for—a rarity for a physics mystery that’s notoriously hard to probe.

“This study addresses one of the most fundamental mysteries in physics: why our Universe is made of matter and not antimatter,” said study corresponding author Muneto Nitta, professor (special appointment) at Hiroshima University’s International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2) in Japan.

“This question is important because it touches directly on why stars, galaxies, and we ourselves exist at all.”

Monday, October 20, 2025

New AI Model for Drug Design Brings More Physics to Bear in Predictions

This illustration shows the mesh of anchoring points the team obtained by discretizing the manifold, an estimation of the distribution of atoms and the probable locations of electrons in the molecule. This is important because, as the authors note in the new paper, treating atoms as solid points "does not fully reflect the spatial extent that real atoms occupy in three-dimensional space."
Image Credit: Liu et al./PNAS

When machine learning is used to suggest new potential scientific insights or directions, algorithms sometimes offer solutions that are not physically sound. Take for example AlphaFold, the AI system that predicts the complex ways in which amino acid chains will fold into 3D protein structures. The system sometimes suggests "unphysical" folds—configurations that are implausible based on the laws of physics—especially when asked to predict the folds for chains that are significantly different from its training data. To limit this type of unphysical result in the realm of drug design, Anima Anandkumar, Bren Professor of Computing and Mathematical Sciences at Caltech, and her colleagues have introduced a new machine learning model called NucleusDiff, which incorporates a simple physical idea into its training, greatly improving the algorithm's performance.

X-Ray Study Reveals New Details About Betelgeuse’s Elusive Companion Star

Betelbuddy, the companion star to Betelgeuse. This image is a color composite made from exposures from the Digitized Sky Survey 2.
Image Credit: ESO/Digitized Sky Survey 2. Acknowledgment: Davide De Martin

Astronomers have long suspected that Betelgeuse — the bright red star blazing in Orion's shoulder — wasn't alone. Now, thanks to a fleeting cosmic window and swift action by Carnegie Mellon University researchers, the true nature of its elusive companion has been illuminated.

In a race against time, the CMU researchers secured director’s discretionary time on both NASA’s Chandra X-ray Observatory and the Hubble Space Telescope to investigate the long-predicted — but never detected — companion star to Betelgeuse. The timing was critical: Around Dec. 6, the companion, nicknamed “Betelbuddy,” reached its maximum separation from the massive red supergiant just before it would disappear behind it for two more years.

“It turns out that there had never been a good observation where Betelbuddy wasn't behind Betelgeuse,” said Anna O’Grady, a McWilliams Postdoctoral Fellow at Carnegie Mellon’s McWilliams Center for Cosmology and Astrophysics. “This represents the deepest X-ray observations of Betelgeuse to date.”

Retired croplands offer hope for carbon storage

An experiment at Cedar Creek Ecosystem Science Reserve tested the long-term ability of abandoned farmland to store carbon.
Photo Credit: Maowei Liang, College of Biological Sciences

Burning fossil fuels has elevated atmospheric carbon dioxide, causing massive changes in the global climate including extreme temperatures and weather events here in the Midwest. Meanwhile, human activities have increased the amount of nutrients like nitrogen and phosphorus in grasslands and forests. These are the elements in fertilizer that make lawns greener and farmlands more productive.

This overabundance of nutrients can lead to reduced water quality, the spread of invasive species and the loss of native species. However, it can also help plants capture carbon dioxide from the atmosphere and store it in the soil. This creates a paradox for environmental management: will reducing nutrient pollution make climate change worse by causing a release of carbon dioxide from the soil?

Combination of immunotherapy and targeted therapy improves survival for patients with advanced colorectal cancer

Human colorectal cancer cells
Image Credit: National Cancer Institute

A new study led by UCLA investigators found that combining zanzalintinib, a targeted therapy drug, and atezolizumab, an immune checkpoint inhibitor, helped patients with metastatic colorectal cancer, the second most common cause of cancer death in the U.S., live longer and control their disease better than with the standard treatment drug regorafenib. 

The findings simultaneously published in The Lancet and presented at the European Society for Medical Oncology Congress; mark the first time an immunotherapy-based regimen has demonstrated a survival benefit in the vast majority of patients with metastatic colorectal cancer.

“This study represents an important step forward for a group of patients who have historically had very few treatment options,” said Dr. J. Randolph Hecht, professor of clinical medicine at the David Geffen School of Medicine at UCLA and first author of the study. “We may finally be finding ways to make immunotherapy work for more patients with colorectal cancer.”

Unmasking the Culprits of Battery Failure with a Graphene Mesosponge

Photo Credit: Roberto Sorin

To successfully meet the United Nations' Sustainable Development Goals (SDGs), we need significant breakthroughs in clean and efficient energy technologies. Central to this effort is the development of next-generation energy storage systems that can contribute towards our global goal of carbon neutrality. Among many possible candidates, high-energy-density batteries have drawn particular attention, as they are expected to power future electric vehicles, grid-scale renewable energy storage, and other sustainable applications.

Lithium-oxygen (Li-O2) batteries stand out due to their exceptionally high theoretical energy density, which far exceeds that of conventional lithium-ion batteries. Despite this potential, their practical application has been limited by poor cycle life and rapid degradation. Understanding the root causes of this instability is a critical step toward realizing a sustainable and innovative energy future.

Controlling prostheses with the power of thought

 A neuroprosthesis. Artificial hands, arms, or legs can restore mobility to people with disabilities. The study investigated how the brain learns to control such prostheses via brain-computer interfaces.
Image Credit: © Sebastian Lehmann

Researchers at the German Primate Center (DPZ) – Leibniz Institute for Primate Research in Göttingen have discovered that the brain reorganizes itself extensively across several brain regions when it learns to perform movements in a virtual environment with the help of a brain-computer interface. The scientists were thus able to show how the brain adapts when controlling motor prostheses. The findings not only help to advance the development of brain-computer interfaces, but also improve our understanding of the fundamental neural processes underlying motor learning.

In order to perform precise movements, our brain's motor system must continuously recalibrate itself. If we want to shoot a basketball, this works well with a familiar basketball, but requires extra practice with a lighter or heavier ball. Our brain uses the deviations from the expected (throw) result as an error signal to learn better commands for the next throw. The brain must also perform this task when it wants to control a movement via a brain-computer interface (BCI), for example, that of a neuroprosthesis. Until now, it was unclear which regions of the brain reflect the expected result of the movement (the trajectory of the ball), which reflect the error signal, and which reflect the corrected movement command that aims to compensate for the previous error.

The Quantum Door Mystery: Electrons That Can’t Find the Exit

Photo Credit: © Technische Universität Wien

What happens when electrons leave a solid material? This seemingly simple phenomenon has eluded accurate theoretical description until now. Researchers have found the missing piece of the puzzle.

Imagine a frog sitting inside a box. The box has a large opening at a certain height. Can the frog escape? That depends on how much energy it has: if it can jump high enough, it could in principle make it out. But whether it actually succeeds is another question. The height of the jump alone isn’t enough — the frog also needs to jump through the opening.

A similar situation arises with electrons inside a solid. When given a bit of extra energy — for example, by bombarding the material with additional electrons — they may be able to escape from the material. This effect has been known for many years and is widely used in technology. But surprisingly, it has never been possible to calculate this process accurately. A collaboration between several research groups at TU Wien has now solved this mystery: just like the frog, it’s not only the energy that matters — the electron also needs to find the right “exit,” a so-called “doorway state.”

Important phenomenon discovered in the Arctic – could boost marine life

Measurements of nitrogen fixation in the Arctic Ocean aboard RV Polarstern
Photo Credit: Rebecca Duncan

Researchers from the University of Copenhagen have discovered an important phenomenon beneath the Arctic sea ice that was previously thought impossible. This phenomenon could have implications for the food chain and the carbon budget in the cold north.

The shrinking sea ice in the Arctic Ocean is, overall, a disaster. But paradoxically, the melting of the ice can also fuel the engine of the Arctic food chains: algae.

Algae are the main food source for life in the sea, but they need nitrogen to grow. And nitrogen is in short supply in the Arctic Ocean. However, a new international study led by the University of Copenhagen indicates there will probably be more of it in the future than previously thought. This could change the future prospects for marine life in the High North and possibly for the carbon budget.

Scientists Confirmed That a "Terrible" Hyena Lived in the Territory of the Modern Caucasus

The scientists used morphometric and morphological analysis of teeth.
Photo Credit: Daniyar Khantemirov

Ural scientists with colleagues from China and Azerbaijan have established that "terrible" hyenas (Dinocrocuta gigantea) lived in the territory of the modern Caucasus 10-9 million years ago. This fact was confirmed by studying jaw fragments that were found in the Upper Miocene site of Eldari, Azerbaijan. The researchers published a description and photographs of the fragments in the journal Palaeoworld.

"In our work, the Dinocrocute hyenas from the Caucasus are described for the first time. Other finds of this species are described from Southern Europe or Northern China. In other words, our finding fills a gap in understanding the distribution of dinocrocutes, which were one of the key predators in the faunas of the Miocene, a geological epoch from 23 to 5 million years before our time," explains Daniyar Khantemirov, co-author of the work, laboratory researcher at the UrFU Laboratory of Natural Science Methods in Humanitarian Research.

Sunday, October 19, 2025

ADC Improves Outcomes for Patients with Advanced Triple-Negative Breast Cancer Who are Ineligible for Immune Checkpoint Inhibitors

Dr. Sara Tolaney, chief of the Division of Breast Oncology at Dana-Farber, is the senior author on the ASCENT-03 study.
Photo Credit: Courtesy of Dana-Farber Cancer Institute

Patients with an aggressive form of breast cancer who are not candidates for immune checkpoint inhibitor therapy showed significantly improved progression-free survival when treated with the antibody drug conjugate sacituzumab govitecan compared to standard chemotherapy. These findings, which stem from the ASCENT-03 trial in triple-negative breast cancer co-led by investigators at Dana-Farber Cancer Institute, are presented today at the European Society for Medical Oncology (ESMO) Congress 2025 in Berlin, Germany. They are also published simultaneously in the New England Journal of Medicine.

Triple-negative breast cancer (TNBC) accounts for about 15% of all breast cancer cases and is often difficult to treat. The 5-year survival rate for patients with metastatic disease is about 15%. Moreover, around 60% of patients with metastatic TNBC have tumors that lack the molecular marker PD-L1. This absence indicates the tumors will not respond to immune checkpoint inhibitors. For most patients with previously untreated TNBC, chemotherapy is the primary treatment option.

TeraCopy Pro


TeraCopy is a long-standing utility for Windows and macOS designed to replace the native file copy and move functions. Its primary goals are to provide superior speed, reliability, and control over file transfers. While the free version offers robust features for personal use, TeraCopy Pro unlocks the full suite of tools for power users, data professionals, and commercial environments.

Core Functionality (Free & Pro)

The main reason anyone seeks out TeraCopy is to overcome the limitations of the default Windows file handler. Here’s what it does best:

Friday, October 17, 2025

What Is: Extinction Level Events

A Chronicle of Earth's Biotic Crises and an Assessment of Future Threats
Image Credit: Scientific Frontline

Defining Biotic Catastrophe

The history of life on Earth is a story of breathtaking diversification and innovation, but it is punctuated by chapters of profound crisis. These are the extinction level events—catastrophes of such magnitude that they fundamentally reset the planet's biological clock. Popular imagination often pictures a single, sudden event, like the asteroid that sealed the fate of the dinosaurs. The geological reality, however, is more complex and, in many ways, more instructive for our current era. Understanding these events requires a rigorous scientific framework that moves beyond simple notions of species loss to appreciate the systemic collapse of entire global ecosystems.

A New Study Indicates Forest Regeneration Provides Climate Benefits, but Won’t Offset Fossil Fuels

Forest regrowth after 5 years since agricultural abandonment near Pucallpa, Ucayali, Peru.
Photo Credit: Jorge Vela Alvarado, Universidad Nacional de Ucayali

When farmland is abandoned and allowed to return to nature, forests and grasslands naturally regrow and absorb carbon dioxide from the atmosphere—helping fight climate change. However, a new study in the journal Global Biogeochemical Cycles, led by scientists at Columbia University, reveals an important wrinkle in this story: these regenerating ecosystems also release other greenhouse gases that reduce some of their climate benefits. The good news? Even accounting for these other gases, letting land regenerate naturally still provides important climate benefits compared with keeping it in agriculture.

Lead author Savannah S. Cooley, a research scientist at NASA Ames Research Center and a recent PhD graduate of Columbia’s Ecology, Evolution and Environmental Biology program, and her team of co-authors analyzed data from 115 studies worldwide to understand how forests and grasslands affect the climate through three key greenhouse gases: carbon dioxide, methane and nitrous oxide. While previous research focused mainly on carbon dioxide absorption by growing trees, this study examined a more complete picture.

How origami robots with magnetic muscles could make medicine delivery less invasive and more effective

A crawling robot created with the Miura-Ori origami pattern. The dark areas are covered in a thin magnetic rubber film which allows the robot to move.
Photo Credit: Courtesy of North Carolina State University

A new 3-D printing technique can create paper-thin “magnetic muscles,” which can be applied to origami structures to make them move.

By infusing rubber-like elastomers with materials called ferromagnetic particles, researchers at North Carolina State University 3-D printed a thin magnetic film which can be applied to origami structures. When exposed to magnetism, the films acted as actuators which caused the system to move, without interfering with the origami structure’s motion.

"This type of soft magnet is unique in how little space it takes up," said Xiaomeng Fang, assistant professor in the Wilson College of Textiles and lead author of a paper on the technique.

“Traditionally, magnetic actuators use the kinds of small rigid magnets you might put on your refrigerator. You place those magnets on the surface of the soft robot, and they would make it move,” she said. “With this technique, we can print a thin film which we can place directly onto the important parts of the origami robot without reducing its surface area much.”

Broad-Bayer collaboration leads to drug candidate for a hard-to-treat type of lung cancer

Broad Communications Scientists in the Broad-Bayer oncology alliance have developed a drug candidate, sevabertinib, that could be a new lung cancer treatment.
Illustration Credit: Agnieszka Grosso

An alliance of scientists at the Broad Institute and Bayer Pharmaceuticals have developed a drug candidate, sevabertinib, that could be a new treatment for a group of lung cancer patients who have few options today.

In a new study published in Cancer Discovery, the team described their efforts to develop sevabertinib. They tested the compound in various lung cancer models and showed its potential to treat non-small cell lung cancers that harbor certain mutations in the ERBB2 gene, which encodes the HER2 protein. These mutations occur in 2 to 4 percent of patients with non-small cell lung cancer, or roughly 40,000 to 50,000 people diagnosed globally each year. These patients tend to be women, including those who are younger, have never smoked, and have a poor prognosis. 

The study also reported data from two participants in Bayer’s phase 1/2 clinical trial of the compound. Based on these findings and other data from this ongoing clinical trial, the drug candidate is currently under Priority Review at the FDA, an expedited review of therapies that treat serious conditions. If approved, it would be the first FDA-approved cancer drug based on Broad discoveries, and the first new medicine from the Broad-Bayer oncology research alliance. 

New antivirals could help prevent cold sores by changing cell structures

Pin1 inhibitors suppress HSV-1 replication by inhibiting viral protein synthesis and preventing nucleocapsid egress from the nucleus.
Illustration Credit: Takemasa Sakaguchi/Hiroshima University

A class of antivirals called Pin1 inhibitors could reduce or stop outbreaks of herpes simplex virus 1 (HSV-1), the common infection behind oral herpes, according to new research published in Antiviral Research.

HSV-1 causes sores around the mouth, commonly called cold sores or fever blisters. Most people are infected with HSV-1 in childhood, and between 50% and 90% of people worldwide have HSV-1. After the initial infection, HSV-1 remains in the body and can reactivate throughout a person’s life. While HSV-1 infections are usually mild, they can be serious and even deadly for people with suppressed immune systems. Finding new, more effective antivirals for this common illness is essential. 

Researchers focused on an enzyme called peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, or Pin1, that regulates protein stability, function, and cellular structure. When this enzyme is dysregulated, it can play a role in a variety of conditions, including obesity, cancer, heart failure, and more. Viruses, such as cytomegalovirus (CMV) and SARS-CoV-2, are known to affect Pin1, and Pin1 inhibitors have been developed to reduce the impact of these viruses. 

When Machines Learn to Feel

Changes in heart rate can provide information about physical and emotional well-being. 
Photo Credit: © RUB, Kramer

In addition to linguistic prompts, large language models can also understand, interpret, and adapt their responses to heart frequency data. Dr. Morris Gellisch, previously of Ruhr University Bochum, Germany, and now at University of Zurich, Switzerland, and Boris Burr from Ruhr University Bochum verified this in an experiment. They developed a technical interface through which the physiological data can be transmitted to the language model in real time. The AI can also account for subtle physiological signals such as changes in heart activity. This opens new doors for use in medical and care applications. The work was published in the technical journal Frontiers in Digital Health.

Archaeologists uncover 5,000-year-old ceremonial site in Jordan

Dolmen found at Murayghat in Jordan.
Photo Credit: Susanne Kerner, University of Copenhagen

A research team led by the University of Copenhagen has uncovered a remarkable Early Bronze Age ritual landscape at Murayghat in Jordan. The discovery can shed new light on how ancient communities responded to social and environmental change.

How did ancient cultures respond to crises and the collapse of the established social order? The 5,000-year-old Early Bronze Age site of Murayghat in Jordan, which has been extensively excavated by archaeologists from the University of Copenhagen, may hold an answer.

Murayghat emerged after the decline of the so-called Chalcolithic culture (ca. 4500–3500 BCE), a period known for its domestic settlements, rich symbolic traditions, copper artifacts, and small cultic shrines.  

When healing turns harmful: adrenal support cells tied to cancer origin

Image Credit: Scientific Frontline / AI generated

A new study from Karolinska Institutet, shows that support cells in the adrenal gland can regenerate hormone-producing tissue after birth. The same cells may also act as a starting point for adrenal tumors, offering new insights into cancer development and potential treatment strategies.

“We found that these glial-like cells not only help maintain healthy tissue but, in some paragangliomas, also carry the same tumor-initiating genetic event,” explains Susanne Schlisio, group leader at the Department of Oncology-Pathology and last author of the study. 

“In tumors with germline VHL mutations, subsets of these support cells showed loss of chromosome 3p, the ‘second hit’ leading to VHL inactivation. This suggests they may be the origin of certain tumors,” says Dr. Michael Mints, docent at the same department and co-corresponding author of the study.

In a surprising discovery, scientists find tiny loops in the genomes of dividing cells

MIT experiments have revealed the existence of “microcompartments,” shown in yellow, within the 3D structure of the genome. These compartments are formed by tiny loops that may play a role in gene regulation.
Illustration Credit: Ed Banigan, edited by MIT News
(CC BY-NC-ND 4.0)

Before cells can divide, they first need to replicate all of their chromosomes, so that each of the daughter cells can receive a full set of genetic material. Until now, scientists had believed that as division occurs, the genome loses the distinctive 3D internal structure that it typically forms.

Once division is complete, it was thought, the genome gradually regains that complex, globular structure, which plays an essential role in controlling which genes are turned on in a given cell.

However, a new study from MIT shows that in fact, this picture is not fully accurate. Using a higher-resolution genome mapping technique, the research team discovered that small 3D loops connecting regulatory elements and genes persist in the genome during cell division, or mitosis.

“This study really helps to clarify how we should think about mitosis. In the past, mitosis was thought of as a blank slate, with no transcription and no structure related to gene activity. And we now know that that’s not quite the case,” says Anders Sejr Hansen, an associate professor of biological engineering at MIT. “What we see is that there’s always structure. It never goes away.”

Thursday, October 16, 2025

New study finds large fluctuations in sea level occurred throughout the last ice age, a significant shift in understanding of past climate

Photo Credit: Michael Chen

Large changes in global sea level, fueled by fluctuations in ice sheet growth and decay, occurred throughout the last ice age, rather than just toward the end of that period, a study published this week in the journal Science has found.

The findings represent a significant change in researchers’ understanding of how the Pleistocene – the geological period from about 2.6 million to 11,700 years ago and commonly known as the last ice age – developed, said Peter Clark Link is external, a paleoclimatologist at Oregon State University and the study’s lead author.

“This is a paradigm shift in our understanding of the history of the ice age,” said Clark, a university distinguished professor in OSU’s College of Earth, Ocean, and Atmospheric Sciences.

During the last ice age, Earth experienced cycles of dramatic shifts in global sea level caused by the formation and melting of large ice sheets over northern areas of North America and Eurasia. These changes are recorded in the shell remains of microscopic marine organisms called foraminifera, which are found in ocean sediment and collected by drilling cores, giving scientists an important record of past climate history.

Muscle wasting reversed in patients with rheumatoid arthritis

Photo Credit: Roger Vaughan

Patients with rheumatoid arthritis increased their leg muscle volume when treated with an anti-rheumatic drug, offering new hope for improved muscle health.

Publishing in the prestigious journal, The Lancet Rheumatology, the team from Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust describe how 15 patients were given Tofacitinib, a Janus kinase (JAK) inhibitor used to treat RA, as part of an experimental medicine study. After 6 months their leg muscles increased in size, particularly in the thigh.  

Sarcopenia is a progressive, age-related musculoskeletal disease characterized by the loss of muscle mass, strength, and physical performance, increasing the risk of falls, fractures, physical disability, and mortality. Currently there are no medicines approved to reverse this muscle-wasting disease. It is commonly seen in patients with rheumatoid arthritis where chronic inflammation contributes to the loss of muscle mass and strength.

Hotter does mean wetter

How rising temperatures will affect rainfall in Japan.
Illustration Credit: KyotoU / Takemi lab

Around the world, we are already witnessing the detrimental effects of climate change, which we know will only become more severe. Extreme weather events such as heavy rainfall, tropical cyclones, and heat waves are projected to intensify, and this will negatively impact both human society and natural ecosystems.

Assessing how climate change affects extreme weather is important not only from a scientific point of view, but also from a practical perspective. It is critical that we start adapting to climate change and mitigating the effects of potential disasters.

This situation has motivated a team of researchers at Kyoto University to investigate how climate change -- in particular, rising temperatures -- affects precipitation in Japan. The team has focused on heavy rainfall patterns and what kind of atmospheric conditions influence their characteristics.

The Many FACES of Lipid Research

Subcellular lipid distributions (magenta) in mitochondria (green) revealed using FACES and super-resolution structure illuminated microscopy.
Image Credit: William Moore

Lipids are fatty molecules that play critical roles in cell function, including membrane structure, energy storage and nutrient absorption. Most lipids are made in a cell organelle called the endoplasmic reticulum, but specific lipid types are shuttled around to different parts of the cell depending on their purpose. Each organelle serves a specific role in a cell and has its own unique mixture of lipids called a lipidome.

Scientists have long wanted to get a closer look at the movement of lipids around a cell, but because organelles are so close together – often only tens of nanometers apart – it’s tough to visualize with traditional light microscopy, which only has resolutions up to 250 nanometers.

Now researchers at the University of California San Diego have unveiled a new technology with the power to see cells in unprecedented detail. The tool, called fluorogen-activating coincidence encounter sensing (FACES), was developed in Associate Professor of Biochemistry & Molecular Biophysics Itay Budin’s lab. This work appears in Nature Chemical Biology.

Helping farmers, boosting biofuels

Doug Collins and Teal Potter, co-authors on the new paper, stand in a field of triticale. The cover crop was grown to study its viability as a biofuel source.
Photo Credit: Chad Kruger/WSU

New research has found cover crops that are viable in Washington’s normal “off season” don’t hurt the soil and can be sold as a biofuel source.

After harvest, farmland often sits fallow and unused until growers seed in the next crop. Soil can erode, weeds can take root, and farmers don’t make any money during that time. Cover crops can eliminate or reduce some of those issues, but many farmers have concerns about their effects on soil quality, a reduced growing window for their primary crop, and the inability to sell the cover crop.

In a paper recently published in the journal Biomass and Bioenergy, a team led by Washington State University scientists looked at four cover crops grown for multiple years in western and central Washington fields. Two showed promising results.

“Molecular bodyguard” helps infections persist

Joram Waititu and Kemal Avican working together in the Avican Lab at the Department of Molecular Biology, Umeå University.
Photo Credit: Gabrielle Beans

Researchers at Umeå University have identified a key molecular player that helps bacteria survive the hostile environment inside the body. Their study reveals how the protein RfaH acts as a protective shield for bacterial genes — and points to new strategies for fighting persistent infections.

“The human body is a very stressful place for bacteria,” says Kemal Avican research group leader at Department of Molecular Biology and Icelab at Umeå University and leader of the study. “During infection, the immune system attacks, nutrients are scarce, and microbes are exposed to bile salts, acids and heat. We looked at how RfaH helps bacteria deal with that stress by turning on the right survival genes at the right time.”

Persistent bacterial infections pose a major challenge in medicine: bacteria can linger in the body long after acute symptoms fade, evading immune defenses and surviving antibiotic treatment. In diseases like tuberculosis, this leads to relapse and makes treatment difficult.

Combination of pre- and probiotics offers superior anti-inflammatory benefits compared with omega-3 or prebiotic alone

Photo Credit: Cosmin Ursea

A new study, led by experts at the University of Nottingham, has found that combining certain types of dietary supplements is more effective than single prebiotics or omega-3 in supporting immune and metabolic health, which could lower the risk of conditions linked to chronic inflammation.

The findings of the study, which are published in the Journal of Translational Medicine, show that a synbiotic - a combination of naturally fermented kefir and a diverse prebiotic fiber mix - produces the most powerful anti-inflammatory effects among the three common dietary supplements tested.

The kefir and prebiotic mix were provided by Chuckling Goat Ltd. It contains a mx of naturally occurring probiotic bacteria and yeasts, which form during the traditional fermentation of goat’s milk with live kefir grains. These grains are living cultures that house dozens of beneficial microbial species.

Featured Article

What Is: Extinction Level Events

A Chronicle of Earth's Biotic Crises and an Assessment of Future Threats Image Credit: Scientific Frontline Defining Biotic Catastrophe ...

Top Viewed Articles