. Scientific Frontline: Material Science
Showing posts with label Material Science. Show all posts
Showing posts with label Material Science. Show all posts

Saturday, March 9, 2024

Exploring the Surface Properties of NiO with Low-Energy Electron Diffraction


Antiferromagnetic (AF) crystals like NiO are experiencing a renaissance as promising materials for ultrafast spintronics. To re-establish old experimental results of surface property investigations and present new theoretical analysis, researchers from Sophia University carried out low-energy electron diffraction (LEED) analysis of AF crystal NiO. They reported an I-V spectra of ‘half-order beam’ and observed a surface wave resonance effect, providing useful insights into energy-temperature dependence of LEED and coherent spin exchange scattering in NiO.

Spintronics is a field that deals with electronics that exploit the intrinsic spin of electrons and their associated magnetic moment for applications such as quantum computing and memory storage devices. Owing to its spin and magnetism exhibited in its insulator-metal phase transition, the strongly correlated electron systems of nickel oxide (NiO) have been thoroughly explored for over eight decades. Interest in its unique antiferromagnetic (AF) and spin properties has seen a revival lately, since NiO is a potential material for ultrafast spintronics devices.

Despite this rise in popularity, exploration of its surface magnetic properties using low-energy electron diffraction (LEED) technique has not received much attention since the 1970s. To review the understanding of the surface properties, Professor Masamitsu Hoshino and Emeritus Professor Hiroshi Tanaka, both from the Department of Materials and Life Sciences at Sophia University, Japan, revisited the surface LEED crystallography of NiO. The results of their quantitative experimental study investigating the coherent exchange scattering in Ni2+ ions in AF single crystal NiO were reported in The European Physical Journal D.

Friday, March 8, 2024

How surface roughness influences the adhesion of soft materials

The illustration shows the contact area of a soft solid that is separated from a rough surface. Each colored spot corresponds to an instability of the contact. The different color intensity shows how much energy is lost in the process.
Illustration Credit: Antoine Sanner, Lars Pastewka.

Adhesive tape or sticky notes are easy to attach to a surface, but are difficult to remove. This phenomenon, known as adhesion hysteresis, can be fundamentally observed in soft, elastic materials: Adhesive contact is formed more easily than it is broken. Researchers at the University of Freiburg, the University of Pittsburgh and the University of Akron in the US have now discovered that this adhesion hysteresis is caused by the surface roughness of the adherent soft materials. Through a combination of experimental observations and simulations, the team demonstrated that roughness interferes with the separation process, causing the materials to detach in minute, abrupt movements, which release parts of the adhesive bond incrementally. Dr. Antoine Sanner and Prof. Dr. Lars Pastewka from the Department of Microsystems Engineering and the livMatS Cluster of Excellence at the University of Freiburg, Dr. Nityanshu Kumar and Prof. Dr. Ali Dhinojwala from the University of Akron and Prof. Dr. Tevis Jacobs from the University of Pittsburgh have published their results in the prestigious journal Science Advances.

“Our findings will make it possible to specifically control the adhesion properties of soft materials through surface roughness,” says Sanner. “They will also allow new and improved applications to be developed in soft robotics or production technology in the future, for example for grippers or placement systems.”

Tuesday, March 5, 2024

Aluminum nanoparticles make tunable green catalysts

Aaron Bayles is a Rice University doctoral alum, a postdoctoral researcher at the National Renewable Energy Laboratory and a lead author on a paper published in the Proceedings of the National Academy of Sciences.
Photo Credit: Courtesy of Aaron Bayles / Rice University

Catalysts unlock pathways for chemical reactions to unfold at faster and more efficient rates, and the development of new catalytic technologies is a critical part of the green energy transition.

The Rice University lab of nanotechnology pioneer Naomi Halas has uncovered a transformative approach to harnessing the catalytic power of aluminum nanoparticles by annealing them in various gas atmospheres at high temperatures.

According to a study published in the Proceedings of the National Academy of Sciences, Rice researchers and collaborators showed that changing the structure of the oxide layer that coats the particles modifies their catalytic properties, making them a versatile tool that can be tailored to suit the needs of different contexts of use from the production of sustainable fuels to water-based reactions.

“Aluminum is an earth-abundant metal used in many structural and technological applications,” said Aaron Bayles, a Rice doctoral alum who is a lead author on the paper. “All aluminum is coated with a surface oxide, and until now we did not know what the structure of this native oxide layer on the nanoparticles was. This has been a limiting factor preventing the widespread application of aluminum nanoparticles.”

Aluminum nanoparticles absorb and scatter light with remarkable efficiency due to surface plasmon resonance, a phenomenon that describes the collective oscillation of electrons on the metal surface in response to light of specific wavelengths. Like other plasmonic nanoparticles, the aluminum nanocrystal core can function as a nanoscale optical antenna, making it a promising catalyst for light-based reactions.

Harmful ‘forever chemicals’ removed from water with new electrocatalysis method

Per- and polyfluoroalkyl substances (PFAS) are often referred to as “forever chemicals” because they break down very slowly. Rochester scientists have developed nanocatalysts that can more affordably remediate a specific type of PFAS called Perfluorooctane sulfonate (PFOS).
Photo Credit: J. Adam Fenster / University of Rochester 

A novel approach using laser-made nanomaterials created from nonprecious metals could lay the foundation for globally scalable remediation techniques.

Scientists from the University of Rochester have developed new electrochemical approaches to clean up pollution from “forever chemicals” found in clothing, food packaging, firefighting foams, and a wide array of other products. A new Journal of Catalysis study describes nanocatalysts developed to remediate per- and polyfluoroalkyl substances, known as PFAS.

The researchers, led by assistant professor of chemical engineering Astrid Müller, focused on a specific type of PFAS called Perfluorooctane sulfonate (PFOS), which was once widely used for stain-resistant products but is now banned in much of the world for its harm to human and animal health. PFOS is still widespread and persistent in the environment despite being phased out by US manufacturers in the early 2000s, continuing to show up in water supplies.

Scientists Have Created Organic Films to Charge Cardiac Pacemakers

The resulting films have high biocompatibility.
Photo Credit: Andrei Ushakov

UrFU scientists, together with colleagues from the University of Aveiro (Portugal), have succeeded in obtaining biocompatible crystalline films. They have high piezoelectric properties - they generate an electric current under mechanical or thermal stress. This property will be useful in the design of elements for invasive medical devices, such as pacemakers. Detailed information about the films obtained and the new method of their synthesis has been published by the scientists in ACS Biomaterials Science & Engineering

"We have succeeded in obtaining films from diphenylalanine that have high piezoelectric properties comparable to their inorganic counterparts. Under mechanical or thermal stress, these films generate electricity. The use of such films will be particularly useful for making invasive cardiac pacemakers - devices that reside inside the human body. When the heart moves or beats, these films generate electricity, which is stored in the pacemaker's batteries. Energy storage devices based on such materials could solve the problem of replacing depleted batteries and reduce the number of surgical procedures," explains Denis Alikin, Head of the Laboratory of Functional Nanomaterials and Nanodevices at the UrFU Research Institute of Physics and Applied Mathematics.

Monday, March 4, 2024

Umbrella for Atoms: The First Protective Layer for 2d Quantum Materials

Amalgamation of experimental images. At the top, a scanning tunneling microscopy image displays the graphene’s honeycomb lattice (the protective layer). In the center, electron microscopy shows a top view of the material indenene as a triangular lattice. Below it is a side view of the silicon carbide substrate. It can be seen that both the indenene and the graphene consist of a single atomic layer.
Image Credit: © Jonas Erhardt/Christoph Maeder

As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers at the Würzburg-Dresden Cluster of Excellence ct.qmat have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach. The findings have just been published in Nature Communications.

2D Quantum Materials Instead of Silicon

The race to create increasingly faster and more powerful computer chips continues as transistors, their fundamental components, shrink to ever smaller and more compact sizes. In a few years, these transistors will measure just a few atoms across – by which point, the miniaturization of the silicon technology currently used will have reached its physical limits. Consequently, the quest for alternative materials with entirely new properties is crucial for future technological advancements.

Wednesday, February 28, 2024

Study unlocks nanoscale secrets for designing next-generation solar cells

A team of MIT researchers and several other institutions has revealed ways to optimize efficiency and better control degradation, by engineering the nanoscale structure of perovskite devices. Team members include Madeleine Laitz, left, and lead author Dane deQuilettes.
Photo Credit: Courtesy of the researchers
(CC BY-NC-ND 4.0 DEED)

Perovskites, a broad class of compounds with a particular kind of crystal structure, have long been seen as a promising alternative or supplement to today’s silicon or cadmium telluride solar panels. They could be far more lightweight and inexpensive, and could be coated onto virtually any substrate, including paper or flexible plastic that could be rolled up for easy transport.

In their efficiency at converting sunlight to electricity, perovskites are becoming comparable to silicon, whose manufacture still requires long, complex, and energy-intensive processes. One big remaining drawback is longevity: They tend to break down in a matter of months to years, while silicon solar panels can last more than two decades. And their efficiency over large module areas still lags behind silicon. Now, a team of researchers at MIT and several other institutions has revealed ways to optimize efficiency and better control degradation, by engineering the nanoscale structure of perovskite devices.

The study reveals new insights on how to make high-efficiency perovskite solar cells, and also provides new directions for engineers working to bring these solar cells to the commercial marketplace. The work is described today in the journal Nature Energy, in a paper by Dane deQuilettes, a recent MIT postdoc who is now co-founder and chief science officer of the MIT spinout Optigon, along with MIT professors Vladimir Bulovic and Moungi Bawendi, and 10 others at MIT and in Washington state, the U.K., and Korea.

“Ten years ago, if you had asked us what would be the ultimate solution to the rapid development of solar technologies, the answer would have been something that works as well as silicon but whose manufacturing is much simpler,” Bulovic says. “And before we knew it, the field of perovskite photovoltaics appeared. They were as efficient as silicon, and they were as easy to paint on as it is to paint on a piece of paper. The result was tremendous excitement in the field.”

Diamonds are a chip's best friend

Highly precise optical absorption spectra of diamond reveal ultra-fine splitting
Illustration Credit: KyotoU/Nobuko Naka

Besides being "a girl's best friend," diamonds have broad industrial applications, such as in solid-state electronics. New technologies aim to produce high-purity synthetic crystals that become excellent semiconductors when doped with impurities as electron donors or acceptors of other elements.

These extra electrons -- or holes -- do not participate in atomic bonding but sometimes bind to excitons -- quasi-particles consisting of an electron and an electron hole -- in semiconductors and other condensed matter. Doping may cause physical changes, but how the exciton complex -- a bound state of two positively-charged holes and one negatively-charged electron -- manifests in diamonds doped with boron has remained unconfirmed. Two conflicting interpretations exist of the exciton's structure.

An international team of researchers led by Kyoto University has now determined the magnitude of the spin-orbit interaction in acceptor-bound excitons in a semiconductor.

"We broke through the energy resolution limit of conventional luminescence measurements by directly observing the fine structure of bound excitons in boron-doped blue diamond, using optical absorption," says team leader Nobuko Naka of KyotoU's Graduate School of Science.

Tuesday, February 27, 2024

Merons realized in synthetic antiferromagnets

Direct observation of antiferromagnetic merons and antimerons
Illustration Credit: Mona Bhukta

Researchers in Germany and Japan have been able for the first time to identify collective topological spin structures called merons in layered synthetic antiferromagnets

The electronic devices we use on a day-to-day basis are powered by electrical currents. This is the case with our living room lights, washing machines, and televisions, to name but a few examples. Data processing in computers also relies on information provided by tiny charge carriers called electrons. The field of spintronics, however, employs a different concept. Instead of the charge of electrons, the spintronic approach is to exploit their magnetic moment, in other words, their spin, to store and process information – aiming to make the computers of the future more compact, fast, and sustainable. One way of processing information based on this approach is to use the magnetic vortices called skyrmions or, alternatively, their still little understood and rarer cousins called 'merons'. Both are collective topological structures formed of numerous individual spins. Merons have to date only been observed in natural antiferromagnets, where they are difficult to both analyze and manipulate.

New quantum entangled material could pave way for ultrathin quantum technologies

Artistic illustration depicts heavy-fermion Kondo matter in a monolayer material.
Illustration Credit: Adolfo Fumega/Aalto University

Researchers reveal the microscopic nature of the quantum entangled state of a new monolayer van der Waals material

Two-dimensional quantum materials provide a unique platform for new quantum technologies, because they offer the flexibility of combining different monolayers featuring radically distinct quantum states. Different two-dimensional materials can provide building blocks with features like superconductivity, magnetism, and topological matter. But so far, creating a monolayer of heavy-fermion Kondo matter – a state of matter dominated by quantum entanglement – has eluded scientists. Now, researchers at Aalto University have shown that it’s theoretically possible for heavy-fermion Kondo matter to appear in a monolayer material, and they’ve described the microscopic interactions that produces its unconventional behavior. These findings were published in Nano Letters.

“Heavy-fermion materials are promising candidates to discover unconventional topological superconductivity, a potential building block for quantum computers robust to noise,” says Adolfo Fumega, the first author of the paper and a post-doctoral researcher at Aalto University.

These materials can feature two phases: one analogous to a conventional magnet, and one where the state of the system is dominated by quantum entanglement, known as the heavy-fermion Kondo state. At the transition between the magnetic phase and the heavy-fermion state, macroscopic quantum fluctuations appear, leading to exotic states of matter including unconventional superconducting phases.

Thursday, February 22, 2024

Graphene research: numerous products, no acute dangers

The "Graphene Flagship" initiative has investigated the effects of graphene (blue) and related materials on health and the environment. Colored scanning electron microscopy
Image Credit: Empa

The largest EU research initiative ever launched has come to a successful end: The Graphene Flagship was officially concluded at the end of last year. Empa researchers were also involved, such as molecular biologist Peter Wick, who was part of the Health and Environment work package from the very beginning – and has just summarized the findings in this area with international colleagues in a comprehensive review article in the specialist journal ACS Nano.

Think big. Despite its research topic, this could well be the motto of the Graphene Flagship, which was launched in 2013: With an overall budget of one billion Euros, it was Europe's largest research initiative to date, alongside the Human Brain Flagship, which was launched at the same time. The same applies to the review article on the effects of graphene and related materials on health and the environment, which Empa researchers Peter Wick and Tina Bürki just published together with 30 international colleagues in the scientific journal ACS Nano; on 57 pages, they summarize the findings on the health and ecological risks of graphene materials, the reference list includes almost 500 original publications.

Wednesday, February 21, 2024

Electrons become fractions of themselves in graphene

The fractional quantum Hall effect has generally been seen under very high magnetic fields, but MIT physicists have now observed it in simple graphene. In a five-layer graphene/hexagonal boron nitride (hBN) moire superlattice, electrons (blue ball) interact with each other strongly and behave as if they are broken into fractional charges.
Image Credit: Sampson Wilcox, RLE
(CC BY-NC-ND 4.0 DEED)

The electron is the basic unit of electricity, as it carries a single negative charge. This is what we’re taught in high school physics, and it is overwhelmingly the case in most materials in nature.

But in very special states of matter, electrons can splinter into fractions of their whole. This phenomenon, known as “fractional charge,” is exceedingly rare, and if it can be corralled and controlled, the exotic electronic state could help to build resilient, fault-tolerant quantum computers.

To date, this effect, known to physicists as the “fractional quantum Hall effect,” has been observed a handful of times, and mostly under very high, carefully maintained magnetic fields. Only recently have scientists seen the effect in a material that did not require such powerful magnetic manipulation.

Now, MIT physicists have observed the elusive fractional charge effect, this time in a simpler material: five layers of graphene — an atom-thin layer of carbon that stems from graphite and common pencil lead. They report their results today in Nature.

They found that when five sheets of graphene are stacked like steps on a staircase, the resulting structure inherently provides just the right conditions for electrons to pass through as fractions of their total charge, with no need for any external magnetic field.

The results are the first evidence of the “fractional quantum anomalous Hall effect” (the term “anomalous” refers to the absence of a magnetic field) in crystalline graphene, a material that physicists did not expect to exhibit this effect.

“This five-layer graphene is a material system where many good surprises happen,” says study author Long Ju, assistant professor of physics at MIT. “Fractional charge is just so exotic, and now we can realize this effect with a much simpler system and without a magnetic field. That in itself is important for fundamental physics. And it could enable the possibility for a type of quantum computing that is more robust against perturbation.”

Tuesday, February 20, 2024

New non-toxic method for producing high-quality graphene oxide

Alexandr Talyzin and his research group at the Department of Physics have developed a new method to synthesize graphene oxide.
Photo Credit: Mattias Pettersson

Researchers from Umeå have found a new way to synthesize graphene oxide which has significantly fewer defects compared to materials produced by the most common method. Similarly good graphene oxide could be synthesized previously only using a rather dangerous method involving extremely toxic fuming nitric acid.

Graphene oxide is often used to produce graphene by removing oxygen. However, if you have holes in graphene oxide, you have holes also after converting it into graphene. Therefore, the quality of the graphene oxide is very important. Alexandr Talyzin and his research group at Umeå University have now cracked the puzzle of how to safely make good graphene oxide. Their results were recently published in the scientific journal Carbon.

Graphene is often described as a “wonder material thanks to its flexibility, high mechanical strength and conductivity. But all properties of graphene are affected by defects. Graphene produced from graphene oxide has much worse than expected mechanical properties and conductivity.

Where Neural Stem Cells Feel at Home

In the laboratory, the Bochum researchers are investigating which environment offers neural stem cells the best chances of survival.
Photo Credit: © RUB, Marquard

Injuries in the central nervous system heal poorly because cavities scar. Researchers hope to remedy this problem by filling the cavities in such a way that stem cells feel comfortable in them.

Researchers from Bochum and Dortmund have created an artificial cell environment that could promote the regeneration of nerves. Usually, injuries to the brain or spinal cord don’t heal easily due to the formation of fluid-filled cavities and scars that prevent tissue regeneration. One starting point for medical research is therefore to fill the cavities with a substance that offers neural stem cells optimal conditions for proliferation and differentiation. The team from Ruhr University Bochum and TU Dortmund University, both in Germany, showed that positively charged hydrogels can promote the survival and growth of stem cells.

Dr. Kristin Glotzbach and Professor Andreas Faissner from the Department of Cell Morphology and Molecular Neurobiology in Bochum cooperated with Professor Ralf Weberskirch and Dr. Nils Stamm from the Faculty of Chemistry and Chemical Biology at TU Dortmund University. The team describes the findings in the American Chemical Society Journal Biomaterials Science and Engineering.

Monday, February 19, 2024

Giant step forward to help treat chronic wounds that affect millions


A team of international scientists has developed a more effective treatment for chronic wounds that does not involve antibiotics or silver-based dressings, but an ionized gas called plasma.

The treatment involves boosting the plasma activation of hydrogel dressings with a unique mix of different chemical oxidants that decontaminate and help heal chronic wounds.

University of South Australia physicist Dr Endre Szili, who led the study published this week in Advanced Functional Materials, describes the new method as “a significant breakthrough” that could revolutionize the treatment of diabetic foot ulcers, internal wounds and potentially cancerous tumors.

“Antibiotics and silver dressings are commonly used to treat chronic wounds, but both have drawbacks,” Dr Szili says. “Growing resistance to antibiotics is a global challenge and there are also major concerns over silver-induced toxicity. In Europe, silver dressings are being phased out for this reason.”

Thursday, February 15, 2024

Innovative materials to combat bacteria

Three bacteria from the ESKAPE group: Staphylococcus aureus (yellow), Pseudomonas aeruginosa (short thick blue rods) and Escherichia coli (long blue rods).
Image Credit: © UNIGE

While crucial to biotechnology, bacteria can also cause severe disease, exacerbated by their increasing resistance to antibiotics. This duality between economic benefits and infectious risks underlines the importance of finding ways to control their development. A team at the University of Geneva (UNIGE) is currently developing a new generation of bactericidal alloys, with a wide range of industrial applications. They could be used to treat the contact surfaces responsible for their transmission. The project, which is supported by Innosuisse, will take 18 months to complete.

Resistance to antimicrobial drugs - such as antibiotics and antivirals - is a global public health issue. According to the World Health Organization (WHO), it is currently responsible for 700,000 deaths a year worldwide. If no action is taken, the number of deaths will rise to 10 million a year by 2050, with dramatic consequences for public health and the economy.

To promote and guide research in this field, the WHO has published a list of pathogens that should be targeted as a matter of priority, because they are particularly threatening to human health. The list includes Staphylococcus aureus and E. coli bacteria, which are associated with the most common hospital-acquired infections, as well as salmonella. Contaminated contact surfaces (utensils, handles, stair railings) play a fundamental role in their transmission.

Electrons screen against conductivity-killer in organic semiconductors

Muhamed Duhandžić, doctoral candidate and study author, writes the equations he and Zlatan Akšamija (left) derived to describe the physics happening inside the doped polymer.
Photo Credit: Harriet Richardson/University of Utah

California’s Silicon Valley and Utah’s Silicon Slopes are named for the element most associated with semiconductors, the backbone of the computer revolution. Anything computerized or electronic depends on semiconductors, a substance with properties that conduct electrical current under certain conditions. Traditional semiconductors are made from inorganic materials—like silicon—that require vast amounts of water and energy to produce.

For years, scientists have tried to make environmentally friendly alternatives using organic materials, such as polymers. Polymers are formed by linking small molecules together to make long chains. The polymerization process avoids many of the energy-intensive steps required in traditional semiconductor manufacturing and uses far less water and fewer gasses and chemicals. They’re also cheap to make and would enable flexible electronics, wearable sensors and biocompatible devices that could be introduced inside the body. The problem is that their conductivity, while good, is not as high as their inorganic counterparts.

All electronic materials require doping, a method of infusing molecules into semiconductors to boost conductivity. Scientists use molecules, called dopants, to define the conductive parts of electrical circuits. Doping in organic materials has vexed scientists because of a lack of consistency—sometimes dopants improve conductivity while other times they make it worse.  In a new study, researchers from the University of Utah and University of Massachusetts Amherst have uncovered the physics that drive dopant and polymer interactions that explain the inconsistent conductivity issue.

Tuesday, February 13, 2024

Bruised and bleeding: New materials show where they’re hurt

Sandia National Laboratories materials chemist Cody Corbin works in a glove box, preparing a container filled with bead bits that will turn brown if someone attempts to tamper with the container’s contents.
Photo Credit: Craig Fritz

Every over-the-counter medication bottle sports a protective seal, usually a plastic wrap or foam layer, or both. These seals offer signs of tampering attempts. In a parallel concern, the International Atomic Energy Agency relies on tamper-indicating devices to make sure it knows if containers of nuclear material have been opened or tampered with.

However, just as a medication bottle might be opened and the tamper seals carefully reattached by a bad guy, the IAEA is concerned its devices could be bypassed and repaired or counterfeited. A possible solution? Engineers at Sandia National Laboratories have developed a groundbreaking prototype using “bruising” materials. Their innovation doesn’t just detect tampering; the new device boldly displays the evidence, like battle scars.

“Our first idea was to create a ‘bleeding’ material where it was extremely obvious that it had been tampered with,” said Heidi Smartt, a Sandia electrical engineer and project lead. “Then we made a new device using these materials where the damage is obvious for people to see. No one has ever done this sort of concept for international nuclear safeguards before.”

Monday, February 12, 2024

Artificial cartilage with the help of 3D printing

The spheroids in which living cells are grown, can be assembled into almost any shape.
Image Credit: Technische Universität Wien

A new approach to producing artificial tissue has been developed at TU Wien: Cells are grown in microstructures created in a 3D printer.

Is it possible to grow tissue in the laboratory, for example to replace injured cartilage? At TU Wien (Vienna), an important step has now been taken towards creating replacement tissue in the lab - using a technique that differs significantly from other methods used around the world.

A special high-resolution 3D printing process is used to create tiny, porous spheres made of biocompatible and degradable plastic, which are then colonized with cells. These spheroids can then be arranged in any geometry, and the cells of the different units combine seamlessly to form a uniform, living tissue. Cartilage tissue, with which the concept has now been demonstrated at TU Wien, was previously considered particularly challenging in this respect.

Thursday, December 21, 2023

Artificial intelligence unravels mysteries of polycrystalline materials

Researchers used 3D model created by AI to understand complex polycrystalline materials that are used in our everyday electronic devices.
Illustration Credit: Kenta Yamakoshi

Researchers at Nagoya University in Japan have used artificial intelligence to discover a new method for understanding small defects called dislocations in polycrystalline materials, materials widely used in information equipment, solar cells, and electronic devices, that can reduce the efficiency of such devices. The findings were published in the journal Advanced Materials.  

Almost every device that we use in our modern lives has a polycrystal component. From your smartphone to your computer to the metals and ceramics in your car. Despite this, polycrystalline materials are tough to utilize because of their complex structures. Along with their composition, the performance of a polycrystalline material is affected by its complex microstructure, dislocations, and impurities. 

A major problem for using polycrystals in industry is the formation of tiny crystal defects caused by stress and temperature changes. These are known as dislocations and can disrupt the regular arrangement of atoms in the lattice, affecting electrical conduction and overall performance. To reduce the chances of failure in devices that use polycrystalline materials, it is important to understand the formation of these dislocations. 

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles