. Scientific Frontline

Wednesday, June 22, 2022

On the Road to Tiny Transistors, How Flat is Flat?

The general architecture of a traditional MOSFET vs. a 2D FET. A FET (field-effect transistor) is a device for regulating the flow of charge carriers (such as electrons) across a channel with three terminals: a source, a drain, and a gate. A MOSFET (metal oxide semiconductor field effect transistor) is by far the most widely used type of FET and is a building block of modern electronics, used in commercial electronic devices for more than 50 years. One main difference between the traditional 3D MOSFET and the “emerging technology” of the 2D FET is that the channel in a traditional MOSFET is in a 3D material, while a 2D FET’s channel is a 2D material.
Credit: Sean Kelley/NIST

Transistors are the building blocks of modern electronics, used in everything from televisions to laptops. As transistors have gotten smaller and more compact, so have electronics, which is why your cell phone is a super powerful computer that fits in the palm of your hand.

But there’s a scaling problem: Transistors are now so small that they are difficult to turn off. A key device element is the channel that charge carriers (such as electrons) travel across between electrodes. If that channel gets too short, quantum effects allow electrons to effectively jump from one side to another even when they shouldn’t.

One way to get past this sizing roadblock is to use layers of 2D materials – which are only a single atom thick – as the channel. Atomically thin channels can help enable even smaller transistors by making it harder for the electrons to jump between electrodes. One well-known example of a 2D material is graphene, whose discoverers won the Nobel Prize in Physics in 2010. But there are other 2D materials, and many believe they are the future of transistors, with the promise of scaling channel thickness down from its current 3D limit of a few nanometers (nm, billionths of a meter) to less than a single nanometer thickness.

Though research has exploded in this area, one issue has been persistently overlooked, according to a team of scientists from the National Institute of Standards and Technology (NIST), Purdue University, Duke University, and North Carolina State University. The 2D materials and their interfaces – which researchers intend to be flat when stacked on top of each other – may not, in fact, be flat. This non-flatness in turn can significantly affect device performance, sometimes in good ways and sometimes in bad.

Research Finds Repurposed Drug Inhibits Enzyme Related to COVID-19

With the end of the pandemic seemingly nowhere in sight, scientists are still very focused on finding new or alternative drugs to treat and stop the spread of COVID-19. In a first-of-its-kind study, researchers at the University of New Hampshire have found that using an already existing drug compound in a new way, known as drug repurposing, could be successful in blocking the activity of a key enzyme of the coronavirus, or SARS-CoV-2, which causes COVID-19.

“The goal was to slow or prevent the spread of the virus by using a strategic therapeutic that could possibly disrupt key steps in the viral life cycle at the molecular level, like the first contact with a healthy cell or the first step in replicating within an infected cell,” said Harish Vashisth, associate professor of chemical engineering.

In their study, recently published in the journal PROTEINS: Structure, Function, and Bioinformatics, researchers set out to target a key enzyme responsible for COVID-19, called the main protease enzyme Mpro, which has become a primary target of intense research and therapeutic development because it is essential for the virus to replicate. In this case, they explored the inhibiting properties of a derivative of the potent chemical compound known as Thiadiazolidinones, or TDZD, which are already being studied as a potential treatment for neurological disorders like Parkinson’s Disease. Researchers used a specific TDZD compound, known as CCG-50014, to target Mpro which acts like a molecular scissor by cutting up long chains of polypeptide proteins of the virus into smaller component proteins. These smaller segments can fold and mature to form new virus particles. Using molecular dynamics simulations combined with laboratory experiments, the researchers determined that TDZD compound was able to inhibit the Mpro enzyme.

Dopamine Regulates Insulin Secretion Through a Complex of Receptors


In a leap forward for diabetes research, Tokyo Tech researchers reveal that the feel-good hormone, dopamine, regulates insulin secretion through a heteromeric complex of receptors, thereby providing new targets for antidiabetic medication and therapy. The study is the first to elucidate the mechanism behind dopamine's down-regulation of insulin secretion.

Diabetes is a lifelong, chronic health condition caused by abnormalities in the body's production and use of the hormone insulin. Research has shown that the feel-good hormone, dopamine (DA), plays a key role in how the body regulates the production of insulin. Typically, insulin is secreted by cells in the pancreas called 'beta-cells,' in response to glucose—a process that is aptly called 'glucose-stimulated insulin secretion (GSIS). DA negatively regulates GSIS, leading to transient changes in the body's levels of insulins. But the mechanism behind this regulation was unknown, until now.

Recently, a team led by researchers from Tokyo Institute of Technology (Tokyo Tech) uncovered the precise mechanism through which DA regulates insulin secretions. Using a technique called "total internal reflection fluorescence microscopy," they were able to reveal that DA "receptors"—proteins on cells that DA can bind to—called D1 and D2, act in concert to achieve the transient regulation of insulin.

Tuesday, June 21, 2022

Plant stress transformed into rapid tests for dangerous chemicals

​ Representation of the plant hormone receptor system that the team engineered to recognize new chemicals. The central yellow molecule is the natural plant hormone ABA.
Credit: Sean Cutler/UCR

Scientists have modified proteins involved in plants’ natural response to stress, making them the basis of innovative tests for multiple chemicals, including banned pesticides and deadly, synthetic cannabinoids.

Diazinon is a banned insecticide that the research team is able to detect with their new plant-hormone-based sensor system.

During drought, plants produce ABA, a hormone that helps them hold on to water. Additional proteins, called receptors, help the plant recognize and respond to ABA. UC Riverside researchers helped demonstrate that these ABA receptors can be easily modified to quickly signal the presence of nearly 20 different chemicals.

The research team’s work in transforming these plant-based molecules is described in a new Nature Biotechnology journal article.

Researchers frequently need to detect all kinds of molecules, including those that harm people or the environment. Though methods to do that exist, they are often costly and require complicated equipment.

Exploring explosives for expanding geothermal energy

Eric Robey, left, a Sandia National Laboratories mechanical engineer, and Joseph Pope, a Sandia technologist, prepare a plexiglass cube for a small-scale explosion. The information from this study could be used to create new geothermal energy systems in locations where it is currently not feasible.
Left Click Image for screen size, Right Click Image and open in new tab for full size.
 Photo by Bret Latter

Why are scientists setting off small-scale explosions inside 1-foot cubes of plexiglass? They’re watching how fractures form and grow in a rock-like substance to see if explosives or propellants, similar to jet fuel, can connect geothermal wells in a predictable manner.

Geothermal energy has a lot of promise as a renewable energy source that is not dependent on the sun shining or the wind blowing, but it has some challenges to wide adoption. One challenge is that there are only a few places in the U.S. that naturally have the right combinations of hot rock close to the Earth’s surface with available underground water. Another challenge is the initial start-up cost of drilling and connecting geothermal wells. Eric Robey, a Sandia National Laboratories mechanical engineer, is leading a team to explore if explosives can reduce those two challenges.

“Our goal was to come up with a new way of creating a geothermal fracture network that you have a clear idea where it is going to go — it’s steerable and manageable — and you are utilizing fewer resources and being more environmentally friendly,” Robey said. “This is where explosives and propellants come in. The idea is that they’ll allow us to get away from pumping a lot of fluid down the wells. We’re collaborating with Lawrence Livermore National Laboratory to model the explosions and improve the predictability of forming fracture networks.”

1.700-year-old Korean genomes show genetic heterogeneity in Three Kingdoms period Gaya

Facial reconstruction of four Ancient Korean individuals based on Ancient DNA data
Full Size Original
Credit: Current Biology

An international team led by The University of Vienna and the Ulsan National Institute of Science and Technology in collaboration with the National Museum of Korea has successfully sequenced and studied the whole genome of eight 1.700-year-old individuals dated to the Three Kingdoms period of Korea (approx. 57 BC-668 AD). The first published genomes from this period in Korea and bring key information for the understanding of Korean population history. The Team has been led by Pere Gelabert and Prof. Ron Pinhasi of the University of Vienna together with Prof. Jong Bhak and Asta Blazyte from the UNIST and Prof. Kidong Bae from the National Museum of Korea.

The study, published in Current Biology, showed that ancient Koreans from Gaya confederacy were more diverse than the present-day Korean population. The eight ancient skeletal remains used for DNA extraction and bioinformatic analyses came from the Daesung-dong tumuli, the iconic funerary complex of the Gaya confederacy, and from Yuha-ri shell mound; both archeological sites located in Gimhae, South Korea. 

How Tumors Make Immune Cells ‘Go Bad’

Jlenia Guarnerio, PhD
Investigators from Cedars-Sinai Cancer have discovered that cancerous tumors called soft-tissue sarcomas produce a protein that switches immune cells from tumor-attacking to tumor-promoting. The study, published today in the peer-reviewed journal Cell Reports, could lead to improved treatments for soft-tissue sarcomas.

The researchers focused on the tumor microenvironment—an ecosystem of blood vessels and other cells recruited by tumors to supply them with nutrients and help them survive.

“Tumors also recruit immune cells,” said Jlenia Guarnerio, PhD, a research scientist with Cedars-Sinai Cancer, assistant professor of Radiation Oncology and Biomedical Sciences and senior author of the study. “These immune cells should be able to recognize and attack the tumor cells, but we found that the tumor cells secrete a protein that changes their biology, so instead of killing tumor cells they actually do the opposite.”

Soft-tissue sarcoma is a rare type of cancer that forms in the muscle, fat, blood vessels, nerves, tendons and joint lining. It most commonly occurs in the arms, legs and abdomen, and kills more than 5,000 people in the U.S. each year, according to the American Cancer Society.

In comparing samples of a variety of soft-tissue sarcomas in humans and laboratory mice, Guarnerio and her team noted that most of these tumors have an abundance of immune cells called myeloid cells in their microenvironment.

“It was striking that such a large percentage of the immune cells were myeloid cells, and we thought that since they obviously weren’t killing the tumor cells, they must be doing something to promote tumor growth,” said Stephen Shiao, MD, PhD, division director of the Division of Radiation Biology, co-leader of the Translational Oncology Program and a co-author of the study. “And indeed, our analysis of tumor samples showed that many of the myeloid cells had adopted a tumor-promoting function.”

Maternal microbiome promotes healthy development of the baby

Bifidobacterium breve 
Credit: Hall Lab, Quadram Institute

A new study has found that a species of gut bacteria, known to have beneficial effects for health in mice and humans, changes the mother’s body during pregnancy and affects the structure of the placenta and nutrient transport - which impacts the growing baby.

The bacteria, Bifidobacterium breve, is widely used as a probiotic so this study could point to ways of combating pregnancy complications and ensuring a healthy start in life across the population.

The research involved scientists from the University of Cambridge, the Quadram Institute, and the University of East Anglia and is published today in the journal Cellular and Molecular Life Sciences.

Microbes in our gut, collectively called the gut microbiome, are known to play a key role in maintaining health by combating infections, and influencing our immune system and metabolism. They achieve these beneficial effects by breaking down food in our diet and releasing active metabolites that influence cells and body processes.

Little is known about how these interactions influence fetal development and the baby’s health pre-birth. To address this, Professor Lindsay Hall from the Quadram Institute and University of East Anglia, and Dr Amanda Sferruzzi-Perri and Dr Jorge Lopez-Tello from the University of Cambridge analysed how supplementation with Bifidobacterium bacteria affected pregnancy in mice.

Children who had bronchitis linked to adult lung problems

Bronchitis in early childhood has been found to increase the risk of lung diseases in middle age according to research from the Allergy and Lung Health Unit at the University of Melbourne.

Researchers found that Australian children who had bronchitis at least once before the age of seven were more likely to have lung problems in later life.

They also established that the lung diseases the children suffered from by the time they reached the age of 53 were usually asthma and pneumonia, rather than chronic bronchitis or chronic obstructive pulmonary disease.

Lead author of a paper published today in the journal, BMJ Open Respiratory Research, Dr Jennifer Perret, said the findings come from one of the world’s oldest surveys, the Tasmanian Longitudinal Health Study, which followed 8,583 people who were born in Tasmania in 1961 and started school in 1968.

“This is the first very long-term prospective study that has examined the relationship between childhood bronchitis severity with adult lung health outcomes. We have seen already that children with protracted bacterial bronchitis are at increased risk of serious chronic infective lung disease after two to five years, so studies like ours are documenting the potential for symptomatic children to develop lung conditions, such as asthma and lung function changes, up to mid-adult life,” she said.

Robotic lightning bugs take flight


Fireflies that light up dusky backyards on warm summer evenings use their luminescence for communication — to attract a mate, ward off predators, or lure prey.

These glimmering bugs also sparked the inspiration of scientists at MIT. Taking a cue from nature, they built electroluminescent soft artificial muscles for flying, insect-scale robots. The tiny artificial muscles that control the robots’ wings emit colored light during flight.

This electroluminescence could enable the robots to communicate with each other. If sent on a search-and-rescue mission into a collapsed building, for instance, a robot that finds survivors could use lights to signal others and call for help.

The ability to emit light also brings these microscale robots, which weigh barely more than a paper clip, one step closer to flying on their own outside the lab. These robots are so lightweight that they can’t carry sensors, so researchers must track them using bulky infrared cameras that don’t work well outdoors. Now, they’ve shown that they can track the robots precisely using the light they emit and just three smartphone cameras.

“If you think of large-scale robots, they can communicate using a lot of different tools — Bluetooth, wireless, all those sorts of things. But for a tiny, power-constrained robot, we are forced to think about new modes of communication. This is a major step toward flying these robots in outdoor environments where we don’t have a well-tuned, state-of-the-art motion tracking system,” says Kevin Chen, who is the D. Reid Weedon, Jr. Assistant Professor in the Department of Electrical Engineering and Computer Science (EECS), the head of the Soft and Micro Robotics Laboratory in the Research Laboratory of Electronics (RLE), and the senior author of the paper.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles