. Scientific Frontline: Aviation
Showing posts with label Aviation. Show all posts
Showing posts with label Aviation. Show all posts

Monday, December 5, 2022

Consortium develops sustainable aircraft engines

Flying without pollutant emissions should be possible in the future.
Photo Credit: RUB, Marquard

A new drive technology should make air travel possible with a clear conscience.

In the face of climate change, many people get on the plane with a guilty conscience: the emission of climate-damaging carbon dioxide from the combustion of fossil fuels is high. An international consortium wants to change this: The aim of the "MYTHOS" project is to develop aircraft engines that can flexibly use various sustainably produced fuels up to pure hydrogen. The project called "Medium-range hybrid low-pollution flexi-fuel / hydrogen sustainable engine" will start from 1. January 2023 funded by the European Union for four years. The coordination is carried out by Prof. Dr. Francesca di Mare, holder of the professorship for thermal turbo machines and aircraft engines of the RUB.

The overarching goal to which the project team is committed is nothing less than the decarbonization of aviation. "We will be developing and demonstrating a groundbreaking design methodology for future short and medium-range civil engines that can use a wide range of liquid and gaseous fuels and ultimately pure hydrogen," said Francesca di Mare. The fuels for which the engines are to be designed include so-called Sustainable Aviation Fuels, or SAF for short: sustainably produced fuels that are not based on fossil fuels. In order to achieve these goals, the MYTHOS consortium develops a multidisciplinary modeling approach for the characterization of the relevant engine components and uses methods of machine learning.

Monday, November 14, 2022

With new heat treatment, 3D-printed metals can withstand extreme conditions

A thin rod of 3D-printed superalloy is drawn out of a water bath, and through an induction coil, where it is heated to temperatures that transform its microstructure, making the material more resilient. The new MIT heat treatment could be used to reinforce 3D-printed gas turbine blades.
Credit: Dominic David Peachey

A new MIT-developed heat treatment transforms the microscopic structure of 3D-printed metals, making the materials stronger and more resilient in extreme thermal environments. The technique could make it possible to 3D print high-performance blades and vanes for power-generating gas turbines and jet engines, which would enable new designs with improved fuel consumption and energy efficiency.

Today’s gas turbine blades are manufactured through conventional casting processes in which molten metal is poured into complex molds and directionally solidified. These components are made from some of the most heat-resistant metal alloys on Earth, as they are designed to rotate at high speeds in extremely hot gas, extracting work to generate electricity in power plants and thrust in jet engines.

There is growing interest in manufacturing turbine blades through 3D-printing, which, in addition to its environmental and cost benefits, could allow manufacturers to quickly produce more intricate, energy-efficient blade geometries. But efforts to 3D-print turbine blades have yet to clear a big hurdle: creep.

In metallurgy, creep refers to a metal’s tendency to permanently deform in the face of persistent mechanical stress and high temperatures. While researchers have explored printing turbine blades, they have found that the printing process produces fine grains on the order of tens to hundreds of microns in size — a microstructure that is especially vulnerable to creep.

“In practice, this would mean a gas turbine would have a shorter life or less fuel efficiency,” says Zachary Cordero, the Boeing Career Development Professor in Aeronautics and Astronautics at MIT. “These are costly, undesirable outcomes.”

Saturday, November 12, 2022

Boeing-Built X-37B Completes Sixth Mission, Sets New Endurance Record

The Boeing-built X-37B Orbital Test Vehicle (OTV) landed at NASA’s Kennedy Space Center in Florida at 5:22 a.m. ET, November 12, 2022.
Photo Credit: Boeing / U.S. Space Force

The Boeing built X-37B Orbital Test Vehicle (OTV) set a new endurance record after spending 908 days in orbit before landing at NASA’s Kennedy Space Center in Florida at 5:22 a.m. ET, November 12, 2022. This surpasses its previous record of 780 days on-orbit.

With the successful completion of its sixth mission the reusable spaceplane has now flown over 1.3 billion miles and spent a total of 3,774 days in space where it conducts experiments for government and industry partners with the ability to return them to Earth for evaluation.

For the first time, the vehicle carried a service module to augment the number of payloads it can haul. The module separated from the OTV prior to de-orbiting ensuring a safe and successful landing.

“This mission highlights the Space Force's focus on collaboration in space exploration and expanding low-cost access to space for our partners, within and outside of the Department of the Air Force (DAF),” said Gen. Chance Saltzman, Chief of Space Operations.

Wednesday, November 2, 2022

Sikorsky And DARPA's Autonomous Black Hawk® Flies Logistics and Rescue Missions Without Pilots on Board

SikorskyOPVBlackHawkYuma2022
Sikorsky demonstrates to the U.S. Army for the first time how an optionally piloted Black Hawk helicopter flying in autonomous mode could resupply forward forces. These uninhabited Black Hawk flights occurred in October at Yuma Proving Ground in Arizona.
Photo Credit: Sikorsky, a Lockheed Martin company.

Sikorsky, a Lockheed Martin company (NYSE: LMT) and the Defense Advanced Research Projects Agency (DARPA) have successfully demonstrated to the U.S. Army for the first time how an uninhabited Black Hawk helicopter flying autonomously can safely and reliably perform internal and external cargo resupply missions, and a rescue operation.

Performed Oct. 12, 14 and 18 as part of the U.S. Army's Project Convergence 2022 (PC22) experiment, the flights show how existing and future piloted utility helicopters could one day fly complex missions in reduced crew or autonomous mode. This would give Army commanders and aviators greater flexibility in how and when aircraft and pilots are used, especially in limited visibility or contested environments.

Why It Matters

Sikorsky is partnered with DARPA to develop autonomy technology that will exponentially improve the flight safety and efficiency of rotary and fixed-wing aircraft. Sikorsky's autonomy system, known as MATRIX™ technology, forms the core of DARPA's ALIAS (Aircrew Labor In-cockpit Automation System) project.

Monday, October 31, 2022

New Tech Solves Longstanding Challenges for Self-Healing Materials

3D printed thermoplastic on woven-carbon fiber reinforcement.
Credit: North Carolina State University

Engineering researchers have developed a new self-healing composite that allows structures to repair themselves in place, without having to be removed from service. This latest technology resolves two longstanding challenges for self-healing materials, and can significantly extend the lifespan of structural components such as wind-turbine blades and aircraft wings.

“Researchers have developed a variety of self-healing materials, but previous strategies for self-healing composites have faced two practical challenges,” says Jason Patrick, corresponding author of the research paper and an assistant professor of civil, construction and environmental engineering at North Carolina State University.

“First, the materials often need to be removed from service in order to heal. For instance, some require heating in an oven, which can’t be done for large components or while a given part is in use. Second, self-healing only works for a limited period. For example, the material might be able to heal a few times, after which its self-repairing properties would significantly diminish. We’ve come up with an approach that addresses both of those challenges in a meaningful way, while retaining the strength and other performance characteristics of structural fiber-composites.”

Wednesday, October 26, 2022

Borrowing a shape from a to-go cup lid, a drone wing could learn how to sense danger faster

Researchers have discovered a new possible use for the dome shape that you would find on a to-go cup lid.
Credit: Pexels/Caleb Oquendo

The oddly satisfying small domes that you press on your soda’s to-go cup lid may one day save a winged drone from a nosedive.

Patterns of these invertible domes on a drone’s wings would give it a way to remember in microseconds what dangerous conditions feel like and react quickly. The study, conducted by researchers at Purdue University and the University of Tennessee, Knoxville, is among the first demonstrations of a metamaterial that uses its shape to learn how to adapt to its surroundings on its own. The paper is published in the journal Advanced Intelligent Systems.

Unlike humans and other living beings, autonomous vehicles lack ways to filter out information they don’t need, which slows their response time to changes in their environment.

“There’s this problem called ‘data drowning.’ Drones cannot use their full flight capability because there is just too much data to process from their sensors, which prevents them from flying safely in certain situations,” said Andres Arrieta, a Purdue associate professor of mechanical engineering with a courtesy appointment in aeronautical and astronautical engineering.

Dome-covered surfaces that can sense their surroundings would be a step toward enabling a drone’s wings to feel only the most necessary sensory information. Because it only takes a certain minimum amount of force to invert a dome, forces below this threshold are automatically filtered out. A specific combination of domes popped up and down at certain parts of the wing, for example, could indicate to the drone’s control system that the wing is experiencing a dangerous pressure pattern. Other dome patterns could signify dangerous temperatures or that an object is approaching, Arrieta said.

Wednesday, October 12, 2022

U.S. Air Force Declares Initial Operational Capability of Sikorsky HH-60W Jolly Green II

The HH-60W Jolly Green II
Full Size Image
Credit: Lockheed Martin Corporation

The U.S. Air Force declared Initial Operational Capability (IOC) for the HH-60W Jolly Green II Combat Rescue Helicopter, validating the platform's operational readiness to forward deploy Air Force rescue crews around the globe. Sikorsky, a Lockheed Martin Company (NYSE: LMT) designed and manufactures the HH-60W, which enables the U.S. Air Force to conduct rescue missions at greater ranges and in the most challenging environments, and with increased survivability.

“This declaration is a vote of confidence from U.S. Air Force leadership and demonstrates the critical role of and need for the HH-60W,” said Nathalie Previte, vice president, Sikorsky Army & Air Force Systems. "Sikorsky is committed to continuing deliveries of the Department of Defense’s only dedicated combat search and rescue (CSAR) helicopter and to provide the most capable platform to rescue crews who depend on this aircraft day-in and day-out to conduct vital life-saving missions.”

Monday, October 10, 2022

Sikorsky Continues Progress on RAIDER X® Helicopter for U.S. Army

RAIDER X is 92% complete at Sikorsky’s Development Flight Center in West Palm Beach, Florida. The design is based on Sikorsky’s X2 technology, which provides unmatched potential and growth.
 Photo courtesy Sikorsky, a Lockheed Martin company.

Sikorsky, a Lockheed Martin company is completing early tests toward a safe flight test program for the RAIDER X® competitive prototype it is building for the U.S. Army’s Future Attack Reconnaissance Aircraft (FARA) program.

“The RAIDER X prototype, which is 92% complete, draws on Lockheed Martin’s broad expertise in developing innovative weapons systems using the latest digital design and manufacturing techniques. These advancements will enable the Army to not only lower the acquisition cost, but also enable rapid, affordable upgrades to stay ahead of the evolving threat,” said Jay Macklin, director, Sikorsky Future Vertical Lift business development.

There are hundreds of additively manufactured parts installed on RAIDER X, including flight-critical parts. The 3D printing process has been so successful that first articles are 95% compliant, saving the team hundreds of hours compared to previous processes.

Monday, October 3, 2022

U.S. Army Orders Additional Enhanced CH-47F Block II Chinooks

The CH-47F Block II during first flight. The Block II Chinook is powered by cutting-edge technologies — including redesigned fuel tanks, a strengthened fuselage and an enhanced drivetrain.
Resized Image using AI by SFLORG
Photo Credit: Fred Troilo

The U.S. Army is continuing to modernize its heavy-lift helicopter fleet with an order for two more Boeing CH-47F Block II Chinooks and long lead funding for additional aircraft.

“Modernizing the Chinook for our Army customer is a priority,” said Ken Eland, Boeing vice president and H-47 program manager. “CH-47F Block II improves readiness, limits future sustainment costs and provides commonality across the fleet. We're dedicated to making CH-47F Block II the best option for the Army's heavy lift mission, now and well into the future." The CH-47F Block II Chinook is powered by cutting-edge technologies — including redesigned fuel tanks, a strengthened fuselage and an enhanced drivetrain.

Last year, the Army awarded Boeing a $136 million contract for the first four CH-47F Block II aircraft, which began production in April 2022. The Lot 2 order valued at $63 million brings the total number of aircraft under contract to six. The separate Lot 3 advance procurement contract is valued at $29 million

Monday, September 19, 2022

Send in the Drones

The new trailer provides more space for the UAS team to work on perfecting aircrafts for flight.
 Credit: Idaho National Laboratory

Ever since the Wright brothers innovated in the back of their bicycle shop in Dayton, Ohio, aviation has been, at heart, a nuts-and-bolts endeavor. For all the sophisticated equipment Idaho National Laboratory’s Unmanned Aerial Systems team has at its disposal for testing high-tech cameras, radios and sensors, there is still a lot of gearhead ingenuity involved.

Here, a $500,000 high-tech surveillance camera is kept aloft on an aircraft powered by a 1/2-horsepower gasoline engine adapted from a Honda pressure washer. The launching catapult for the plane is basically an oversized potato gun.

The group operates both in Idaho Falls and at the INL Site from a base that includes a 1,000-foot paved runway, a control trailer and a newly built 1,500-square-foot hangar.

‘Workhorses’

The Department of Energy complex has noted INL’s strength in testing unmanned aerial vehicles, or UAVs (better known as drones). Over 20 years, the lab has developed capabilities to test new platforms and evaluate technology not only for DOE but also the Department of Defense and private industry. With 890 square miles of open high-altitude desert, a secure border, and a sophisticated wireless test bed, the INL Site has proven to be a great place for testing unmanned aerial vehicles against real-world conditions like severe weather, temperature swings and day/night operations.

Tuesday, September 6, 2022

Engineers Study Bird Flight

Photo credit: Karin Hiselius on Unsplash

People have been fascinated by bird flight for centuries, but exactly how birds can be so agile in the air remains mysterious. A new study, published the week of Sept. 5 in Proceedings of the National Academy of Sciences, uses modeling and aerodynamics to describe how gulls can change the shape of their wings to control their response to gusts or other disturbances. The lessons could one day apply to uncrewed aerial vehicles or other flying machines.

“Birds easily perform challenging maneuvers and they’re adaptable, so what exactly about their flight is most useful to implement in future aircraft?” said Christina Harvey, assistant professor in the Department of Mechanical and Aerospace Engineering at the University of California, Davis, and lead author on the paper.

Harvey began studying gulls as a master’s student in zoology at the University of British Columbia, after earning her bachelor’s degree in mechanical engineering.

“Gulls are very common and easy to find, and they’re really impressive gliders,” she said.

Harvey continued her work on gulls as a doctoral student at the University of Michigan. She recently joined the faculty at UC Davis after completing her Ph.D. in aerospace engineering.

Boeing Demonstrates Open Autonomy Architecture for Manned-Unmanned Teaming with MQ-25

Boeing conducted approximately 125 test flight hours with the MQ-25 test asset, completing three refueling flights as well as a deck handling demonstration aboard the USS George H.W. Bush in 2021. 
Credit: Boeing

Boeing [NYSE: BA] has digitally demonstrated a new open autonomy architecture for MQ-25 that will allow the U.S. Navy to increase mission effectiveness by integrating manned-unmanned teaming (MUM-T) capability at speed and scale.

The non-proprietary architecture, based on the government-owned Open Mission System specification, is the foundation for advanced MUM-T. A Boeing-led team virtually demonstrated how other aircraft can use MQ-25’s architecture and task it to conduct tanking and intelligence, surveillance and reconnaissance (ISR) missions – all within the mission airspace and without traditional communications with the ship-based ground control station.

Boeing’s MUM-T demonstration included Northrop Grumman’s E-2D Advanced Hawkeye command and control aircraft, Boeing’s P-8A Poseidon maritime patrol and reconnaissance aircraft and Boeing’s F/A-18 Block III Super Hornet fighter jet. Using their existing operational flight program software and data links, the aircraft safely and efficiently tasked four virtual, autonomous MQ-25s to conduct ISR missions. The F/A-18 also used its advanced tactical data links and Boeing’s conceptual “Project Black Ice” crew vehicle interface, which significantly reduced aircrew workload.

Saturday, August 6, 2022

UC gets NASA grant to improve drone navigation

UC will work with the Pennsylvania company VISIMO to develop better autonomous navigation for drones as part of a NASA grant.
Resized Image using AI by SFLORG
Credit: Andrew Higley/UC Marketing + Brand

NASA awarded a small business grant to the University of Cincinnati and a Pennsylvania company to develop better autonomous navigation for drones.

UC is among 41 public institutions and 257 small businesses across the United States that will share $50 million in Small Business Innovation Research grants.

“NASA is working on ambitious, groundbreaking missions that require innovative solutions from a variety of sources, especially our small businesses,” NASA Deputy Administrator Pam Melroy said.

UC College of Engineering and Applied Science aerospace engineering professor Kelly Cohen will work with the company VISIMO, based in Carnegie, Pennsylvania, to develop a testing environment that helps evaluate the safety and stability of artificial intelligence models used in autonomous drones. Using a 3D simulation, the project will test the complex sensor fusion and decision-making routines needed for real-time autonomous navigation.

According to the grant application, the simulations will help put the artificial intelligence to the test in situations that feature cascading failures in emergency situations such as a sudden storm that knocks out a drone’s sensor or cameras.

Thursday, July 28, 2022

Boeing, U.S. Air Force Celebrate 50 Years of F-15 Innovation

F-15 Tower flyby
Credit: Boeing

On July 27, 1972, the Boeing [NYSE: BA] F-15 flew for the first time with Chief Test Pilot Irv Burrows at the controls. Fifty years later, the undefeated F-15 continues to evolve and add advanced capability to the U.S. Air Force fighter fleet.

“Boeing is proud of the F-15’s proven performance and of our shared legacy on this platform with the U.S. Air Force and operators around the world,” said Prat Kumar, vice president of F-15 Programs. “With its unrivaled combat performance, five decades-long production run and continuous evolution, the F-15 has a remarkable history and continues today to be a critical asset for U.S. and allied forces. And with the development of new, advanced capabilities and the evolution of the F-15EX, the best is yet to come.”

Boeing’s F-15 program was initiated at the request of the U.S. Air Force, which needed a fighter jet designed to maintain the country’s air superiority. Through its variants, the F-15 has also served that mission internationally with numerous global customers including Japan, Israel, Saudi Arabia, Singapore, South Korea and Qatar.

Monday, June 27, 2022

United States Army And Sikorsky Strengthen Army Aviation Fleet With 10th H-60 Black Hawk Helicopters

Lockheed-Martin-Sikorsky-HH60M-Black-Hawk-June-2022 An HH-60M MEDEVAC takes flight at Sikorsky’s headquarters in Stratford, Connecticut. Sikorsky continues to modernize and enhance the Black Hawk thanks to a hot production line, mature well-established supply chain and digital factory.
 Photo courtesy Sikorsky, a Lockheed Martin company.

The United States government and Sikorsky, a Lockheed Martin company (NYSE: LMT), signed a five-year contract for a baseline of 120 H-60M Black Hawk helicopters, with options to reach a total of 255 aircraft to be delivered to the U.S. Army and Foreign Military Sales (FMS) customers. Sikorsky continues to modernize and enhance the Black Hawk to meet the Army's challenging and evolving missions by continuously delivering aircraft thanks to a hot production line, mature well-established supply chain and digital factory.

The "Multi-Year X" contract for UH-60M Black Hawk and HH-60M MEDEVAC aircraft marks the 10th multiple-year contract for Sikorsky and the U.S. government for H-60 helicopters. With more than 2,100 H-60 variants in the U.S. Army's inventory, the Black Hawk continues to be the workhorse and backbone of U.S. Army Aviation. As the Army continues to develop its Future Vertical Lift (FVL) capabilities, they will continue to operate the H-60M for the next several decades and alongside the future fleet.

Thursday, June 23, 2022

Boeing Signs on for Aireon Space-Based ADS-B Data Services

Photo Credit: Aireon

Aireon, the world’s leading provider of space-based automatic dependent surveillance-broadcast (ADS-B) services, will deliver its flight data stream to Boeing [NYSE: BA]. Boeing will use the stream to expand its advanced data analytics capabilities in its effort to further strengthen commercial air travel safety.

Aireon will provide historical aircraft data and near real-time aircraft event data via its AireonINSIGHTS product for select Boeing airplane programs.

As part of its implementation of an enterprise Safety Management System (SMS), Boeing will integrate the ADS-B data into its safety analytics tools. Recognized worldwide as an industry best practice, SMS is an integrating framework for managing safety risks. Through the use of data science and data analytics, the information will deliver insights to proactively identify hazards and monitor emerging safety trends.

“We are investing in a data stream that can be transformed into safety intelligence,” said Vishwa Uddanwadiker, Boeing vice president of Aerospace Safety Analytics. “We are adding this to our data analytics ecosystem to help predict and prevent safety risks, while identifying other opportunities to strengthen our Safety Management System.”

The global space-based ADS-B data from AireonINSIGHTS can help customers gain insights to key performance indicators on flight safety.

“The power of the Aireon data unlocks a cache of information for Boeing regarding the operations of its aircraft in the global airspace. With this integration, Boeing will have data to provide a full operational view of its fleet, and we are excited to partner with them,” said Don Thoma, Aireon CEO.

As a leading global aerospace company, Boeing develops, manufactures and services commercial airplanes, defense products and space systems for customers in more than 150 countries. As a top U.S. exporter, the company leverages the talents of a global supplier base to advance economic opportunity, sustainability and community impact. Boeing's diverse team is committed to innovating for the future, leading with sustainability, and cultivating a culture based on the company's core values of safety, quality and integrity. 

Aireon has deployed a space-based air traffic surveillance system for ADS-B-equipped aircraft throughout the entire globe. Aireon is harnessing next-generation aviation surveillance technologies that were formerly ground-based and, for the first time ever, is extending their reach globally to significantly improve efficiency, enhance safety, reduce emissions, and provide cost savings benefits to all stakeholders. Space-based ADS-B surveillance covers oceanic, polar, and remote regions, and augments existing ground-based systems that are limited to terrestrial airspace. In partnership with leading ANSPs from around the world, like NAV CANADA, the Irish Aviation Authority, ENAV, NATS UK and NAVIAIR, as well as Iridium Communications, Aireon is providing a global, real-time, space-based air traffic surveillance system, available to all aviation stakeholders.

Source/Credit: Boeing

av062322_01

Monday, June 13, 2022

Lockheed Martin, KAI Sign Teaming Agreement for Future T-50 Opportunities

Aimee Burnett, Greg Ulmer and OJ Sanchez join Mr. Hyun-Ho Ahn, president & CEO, Korea Aerospace Industries, for the T-50 Teaming Agreement signing ceremony.
Credit: Lockheed Martin Corporation

Lockheed Martin and Korea Aerospace Industries (KAI) have signed a teaming agreement for future T-50 opportunities, the newest partnership in the decades-long relationship between the companies.

“Lockheed Martin is an air power solutions leader, delivering capabilities across the entire spectrum of training and combat aircraft,” says Aimee Burnett, vice president, Integrated Fighter Group Business Development at Lockheed Martin. “We are proud to continue to partner with KAI on the T-50 to leverage our collective experiences to train the next generation of pilots to fly, fight and win."

She says the T-50 is a proven aircraft program that reduces the learning curve for new pilots and gets them flying operational sorties faster – even in fifth-generation aircraft like the F-35. That’s important as air forces around the world need to get their pilots up to speed faster than ever before, whether that’s to fill a gap in personnel or due to increased frequency of combat missions.

“That’s where the benefits of the proven T-50 program really come into play,” she says. “The seamless training experience with the T-50 gives student pilots an additional edge and fully prepares them – in less time than in the past – to fly any combat mission.”

Wednesday, June 1, 2022

Boeing Teams with Canadian Industry to Offer P-8A Poseidon

The P-8A Poseidon
Credit: Boeing

Boeing [NYSE: BA] and several Canadian industry partners announced today their intent to collaborate to provide the capability and sustainability of the proven P-8A Poseidon for the Canadian Multi-Mission Aircraft (CMMA) requirement.

Team Poseidon, consisting of CAE, GE Aviation Canada, IMP Aerospace & Defense, KF Aerospace, Honeywell Aerospace Canada and Raytheon Canada, forms the cornerstone of a Canadian P-8 industrial footprint. The team builds on 81 Canadian suppliers to the platform and to more than 550 Canadian suppliers across all provinces contributing to Boeing's annual CAD $5.3 billion in economic benefit to Canada, supporting more than 20,000 Canadian jobs.

The Boeing P-8A is a proven military off-the-shelf solution with nearly 150 aircraft delivered to five nations to date. The P-8 will improve Canada’s capability to defend its northern and maritime borders while ensuring interoperability with NORAD and NATO allies. As a leading platform for reducing the environmental impact of military aircraft, the P-8 can operate on a 50% blend of sustainable aviation fuel today with aspirations to move toward 100% with investment in new technology.

Thursday, April 28, 2022

Boeing Unveils First T-7A Red Hawk Advanced Trainer Jet to be Delivered to the U.S. Air Force

The first T-7A Red Hawk advanced trainer has rolled out of the production facility in St. Louis, Missouri. Ushering in a new era of training for U.S. Air Force fighter and bomber pilots. The jets have red tails to honor the legendary Tuskegee Airmen who flew their aircraft with red tails during World War II. First jets scheduled to arrive at Joint Base San Antonio- Randolph next year.
Photo Credit- Eric Shindelbower

Boeing [NYSE: BA] has unveiled the first T-7A Red Hawk advanced trainer jet to be delivered to the U.S. Air Force. The jet, one of 351 the U.S. Air Force plans to order, was unveiled prior to official delivery.

The fully digitally designed aircraft was built and tested using advanced manufacturing, agile software development and digital engineering technology significantly reducing the time from design to first flight. The aircraft also features open architecture software, providing growth and flexibility to meet future mission needs.

“We’re excited and honored to deliver this digitally advanced, next-generation trainer to the U.S. Air Force,” said Ted Colbert, president and CEO, Boeing Defense, Space & Security. “This aircraft is a tangible example of how Boeing, its suppliers and partners are leading the digital engineering revolution. T-7A will prepare pilots for future missions for decades to come.”

Monday, April 11, 2022

Lockheed Martin Stalker VXE UAS Completes a World Record 39-Hour Flight

Stalker VXE
Credit: Lockheed Martin Corporation

Lockheed Martin (NYSE: LMT) Skunk Works® demonstrated the expanded endurance capabilities of a specially configured Lockheed Martin Stalker VXE unmanned aerial system (UAS) through a world record endurance flight on Feb. 18, 2022, at the Santa Margarita Ranch in California.

The flight establishes a new record in the Group 2 (5 to <25-kilogram) category with a flight time of 39 hours, 17 minutes and 7 seconds. The flight has been submitted to the Fédération Aéronautique Internationale (FAI), the world sanctioning body for aviation records, through its U.S. affiliate, the National Aeronautic Association, for certification.

A production Stalker VXE was modified for this record-setting flight with an external, wing-mounted fuel tank. The flight provided valuable insight for improvements to Stalker VXE aimed at scaling its mission capabilities for the future.

Stalker VXE’s class-leading endurance, broad operating envelope, modular payload compliance, vertical take-off and landing capability, and open system architecture allow it to execute diverse and demanding missions while maintaining a small operational footprint and crew.

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles