Nanocrystalline materials can serve as raw materials for 3D printing permanent magnets. Photo Credit: Oksana Meleshchuk |
Scientists of the Ural Federal University have described the processes of magnetization reversal of nanocrystalline alloys used as raw materials for 3D printing of magnetic systems. The description of the research and the results have been published in the Journal of Magnetism and Magnetic Materials.
Permanent magnets are products made of hard magnetic materials capable of maintaining the state of magnetization for a long time. They are used as autonomous sources of magnetic field to convert mechanical energy into electrical energy and vice versa. Applications of permanent magnets include robotics, magnetic resonance imaging, production of wind generators, electric motors, mobile phones, high-quality speakers, home appliances, and hard disk drives.
The use of permanent magnets makes it possible to reduce the dimensions of some products and increase their efficiency. The development of power engineering and robotics, miniaturization of high-tech devices, and electric and hybrid vehicles require an annual increase in the production of permanent magnets and at the same time improvement of their magnetic properties. At the same time, one of the most important tasks in the production of permanent magnets is to increase their coercivity (the value of the external magnetic field strength required for complete demagnetization of a ferro- or ferrimagnetic substance).