. Scientific Frontline: Swimming secrets of prehistoric reptiles unlocked by new study

Tuesday, April 18, 2023

Swimming secrets of prehistoric reptiles unlocked by new study

Paleobiologist Dr Susana Gutarra taking measurements from a very complete specimen of Liopleurodon, a plesiosaur from the Middle-Late Jurassic of Germany (Museum of Paleontology in Tübingen).
Photo Credit: Dr Susana Gutarra

Some of the most extraordinary body transformations in evolution have occurred in animals that adapted to life in water from land-living ancestors, such as modern whales, turtles and seals. During the Mesozoic, from 252 to 66 million years ago, while the dinosaurs stomped about on land, many groups of reptiles took to the seas, such as the iconic ichthyosaurs, plesiosaurs, crocodiles and mosasaurs.

In a new paper, published in the journal Palaeontology, a Bristol team of paleobiologists used state-of-the-art statistical methods to perform a large-scale quantitative study, the first of its kind, on the locomotion of Mesozoic marine reptiles.

The researchers collected measurements from 125 fossilized skeletons, and used these to explore changes in swimming styles within lineages and through time, discovering that there was no explosive radiation at the beginning of the Mesozoic, but a gradual diversification of locomotory modes, which peaked in the Cretaceous period.

An almost 8m-long specimen of Temnodontosaurus, a fish-shaped ichthyosaur from the Early Jurassic of Germany (State Museum of Natural History of Stuttgart, Germany), is one of the fossils included in this study.
Photo Credit: Dr Susana Gutarra

Lead author Dr Susana Gutarra of Bristol’s School of Earth Sciences said:  “Changes in anatomy in land-to-sea transitions are intimately linked to the evolution of swimming. For example, sea lions’ flippers have relatively short forearms and large hands, very different from the walking legs of their ancestors. The rich fossil record of Mesozoic marine reptiles provided great opportunity to study these transitions at a large scale.”

Co-author Beatrice Heighton, said: “We included measurements from living aquatic animals, such as otters, seals and turtles, of which we know their swimming behavior. This is very important to provide a functional reference for the ancient species, with unknown swimming modes.”

In the aftermath of the end-Permian extinction, about 250 million years ago, various groups of reptiles became aquatic hunters, populating the early Mesozoic seas.

Co-author Dr Tom Stubbs said: “After this devastating event, there was a gradual diversification of locomotory modes, which contrasts with the rapid radiation described previously for feeding strategies. This is fascinating because it suggests a ‘head-first’ pattern of evolution in certain lineages.”

Sea-going reptiles from the Mesozoic era evolved a great diversity of body forms and sizes. Changes in their body and limb anatomy throughout evolution are associated with swimming adaptations. The variety of locomotory modes in Mesozoic marine reptiles is illustrated by (bottom-to-top) an early mosasauroid, a placodont, a plesiosaur and a fish-shaped ichthyosaur.
Illustration Credit: Dr Susana Gutarra

This paper sheds light into the swimming of specific groups. Dr Ben Moon explained: “Ichthyosaurs were highly specialized for aquatic locomotion from very early in their evolution. This includes their close relatives, the hupehsuchians, which had a morphology unlike any other known aquatic tetrapod. Further, we see overlap between mosasaurs and ichthyosaurs, which is indicative that mosasaurs evolved a swimming mode by oscillating flukes, different from the eel-like body undulation suggested in the past.

“In contrast, we don’t find evidence of convergence between ichthyosaurs and metriorhynchids (the highly aquatic crocodyliform thalattosuchians). This group retained quite primitive-looking hindlimbs, which seems incompatible with swimming by fluke oscillation.” 

This study also delves into the evolution of size, a feature related to locomotion, animal physiology and ocean productivity. Professor Mike Benton said: “We know that transition to life in water is usually accompanied by an increase in body mass, as seen in cetaceans, and one of our previous studies shows that large sizes benefit aquatic animals in reducing the mass-specific costs of drag. Thus, it was essential to explore this trait in the wider ensemble of Mesozoic marine reptiles.”

Dr Gutarra added: “Body size follows a similar trend to the diversification of locomotory modes, and the widest spread of body size also occurred in the Cretaceous, confirming a strong connection between the two. The rate of increase and the maximum limits to body size seems to vary a lot between groups. This is a fascinating observation. We need to explore further what factors influence and limit the increase in body mass in each group.”

Funding: This research was funded by the Natural Environment Research Council (NERC) and the European Research Council (ERC).

Published in journalPalaeontology

Source/CreditUniversity of Bristol

Reference Number: pal041823_01

Privacy Policy | Terms of Service | Contact Us

Featured Article

Autism and ADHD are linked to disturbed gut flora very early in life

The researchers have found links between the gut flora in babies first year of life and future diagnoses. Photo Credit:  Cheryl Holt Disturb...

Top Viewed Articles