. Scientific Frontline: Engineering
Showing posts with label Engineering. Show all posts
Showing posts with label Engineering. Show all posts

Friday, January 6, 2023

Controlled, localized delivery of blood thinner may improve blood clot treatment

Co-authors Atip Lawanprasert (left), doctoral student in biomedical engineering, Sopida Pimcharoen (center), undergraduate student in biomedical engineering and Scott Medina (right), Penn State associate professor of biomedical engineering, analyze results related to their study of combining the anticoagulant heparin with peptide to slow down the medication's delivery at the site of a blood clot.
Photo Credit: Jeff Xu / Pennsylvania State University

Heparin has long been used as a blood thinner, or anticoagulant, for patients with blood clotting disorders or after surgery to prevent complications. But the medication remains difficult to dose correctly, potentially leading to overdosing or underdosing.

A team of Penn State researchers combined heparin with a protein fragment, peptide, to slow down the release of the drug and convey the medication directly to the site of a clot. They published their findings in the journal Small.

“We wanted to develop a material that can gradually deliver heparin over time rather than the current iteration that gets cleared from the body in a couple of hours,” said corresponding author Scott Medina, Penn State associate professor of biomedical engineering. “We also wanted to deliver the drug through the skin instead of through an IV.”

When mixed, positively charged peptides and negatively charged heparin bind to create a nanogranular paste that can be injected under the skin, forming a cache of material that is then diffused in the circulatory system and travels to blood clots when they appear. The turbulent flow of fluid near a blood clot triggers the two materials to separate, allowing heparin to begin its anticoagulating action.

UCR scientists develop method to turn plastic waste into potentially valuable soil additive

Recent rain storms washed plastic waste into a creek bed in Riverside's Fairmount Park.
Photo Credit: David Danelski/UCR

University of California, Riverside, scientists have moved a step closer to finding a use for the hundreds of millions of tons of plastic waste produced every year that often winds up clogging streams and rivers and polluting our oceans.

In a recent study, Kandis Leslie Abdul-Aziz, a UCR assistant professor of chemical and environmental engineering, and her colleagues detailed a method to convert plastic waste into a highly porous form of charcoal or char that has a whopping surface area of about 400 square meters per gram of mass.

Such charcoal captures carbon and could potentially be added to soil to improve soil water retention and aeration of farmlands. It could also fertilize the soil as it naturally breaks down. Abdul-Aziz, however, cautioned that more work needs to be done to substantiate the utility of such char in agriculture.

The plastic-to-char process was developed at UC Riverside’s Marlan and Rosemary Bourns College of Engineering. It involved mixing one of two common types of plastic with corn waste — the leftover stalks, leaves, husks, and cobs — collectively known as corn stover. The mix was then cooked with highly compressed hot water, a process known as hydrothermal carbonization.

Wednesday, January 4, 2023

Self-powered, printable smart sensors created from emerging semiconductors could mean cheaper, greener Internet of Things

Simon Fraser University professor Vincenzo Pecunia
Photo Credit: Courtesy of Simon Fraser University

Creating smart sensors to embed in our everyday objects and environments for the Internet of Things (IoT) would vastly improve daily life—but requires trillions of such small devices. Simon Fraser University professor Vincenzo Pecunia believes that emerging alternative semiconductors that are printable, low-cost and eco-friendly could lead the way to a cheaper and more sustainable IoT.

Leading a multinational team of top experts in various areas of printable electronics, Pecunia has identified key priorities and promising avenues for printable electronics to enable self-powered, eco-friendly smart sensors. His forward-looking insights are outlined in his paper published on Dec. 28 in Nature Electronics.

“Equipping everyday objects and environments with intelligence via smart sensors would allow us to make more informed decisions as we go about in our daily lives,” says Pecunia. “Conventional semiconductor technologies require complex, energy-intensity, and expensive processing, but printable semiconductors can deliver electronics with a much lower carbon footprint and cost, since they can be processed by printing or coating, which require much lower energy and materials consumption.”

Tuesday, January 3, 2023

Researchers Demonstrate New Strain Sensors in Health Monitoring, Machine Interface Tech

Image Credit: Shuang Wu.

Researchers at North Carolina State University have developed a stretchable strain sensor that has an unprecedented combination of sensitivity and range, allowing it to detect even minor changes in strain with greater range of motion than previous technologies. The researchers demonstrated the sensor’s utility by creating new health monitoring and human-machine interface devices.

Strain is a measurement of how much a material deforms from its original length. For example, if you stretched a rubber band to twice its original length, its strain would be 100%.

“And measuring strain is useful in many applications, such as devices that measure blood pressure and technologies that track physical movement,” says Yong Zhu, corresponding author of a paper on the work and the Andrew A. Adams Distinguished Professor of Mechanical and Aerospace Engineering at NC State.

“But to date there’s been a trade-off. Strain sensors that are sensitive – capable of detecting small deformations – cannot be stretched very far. On the other hand, sensors that can be stretched to greater lengths are typically not very sensitive. The new sensor we’ve developed is both sensitive and capable of withstanding significant deformation,” says Zhu. “An additional feature is that the sensor is highly robust even when over-strained, meaning it is unlikely to break when the applied strain accidently exceeds the sensing range.”

Monday, December 19, 2022

Daylong wastewater samples yield surprises

Rice University engineers compared wastewater “grabs” to daylong composite samples and found the grab samples were more likely to result in bias in testing for the presence of antibiotic-resistant genes.
 Illustration Credit: Stadler Research Group/Rice University

Testing the contents of a simple sample of wastewater can reveal a lot about what it carries, but fails to tell the whole story, according to Rice University engineers.

Their new study shows that composite samples taken over 24 hours at an urban wastewater plant give a much more accurate representation of the level of antibiotic-resistant genes (ARGs) in the water. According to the Centers for Disease Control and Prevention (CDC), antibiotic resistance is a global health threat responsible for millions of deaths worldwide.

In the process, the researchers discovered that while secondary wastewater treatment significantly reduces the amount of target ARG, chlorine disinfectants often used in later stages of treatment can, in some situations, have a negative impact on water released back into the environment.

The lab of Lauren Stadler at Rice’s George R. Brown School of Engineering reported seeing levels of antibiotic-resistant RNA concentrations 10 times higher in composite samples than what they see in “grabs,” snapshots collected when flow through a wastewater plant is at a minimum.

Saturday, December 17, 2022

UCLA-developed soft brain probe could be a boon for depression research

 Illustration of the soft probe with aptamer biosensors implanted in the brain.
Illustration Credit: Zhao, et al., 2022

Anyone familiar with antidepressants like Prozac or Wellbutrin knows that these drugs boost levels of neurotransmitters in the brain like serotonin and dopamine, which are known to play an important role in mood and behavior.

It might come as a surprise, then, that scientists still have very little data about the specific relationship between neurotransmitters — chemicals that relay messages from one brain cell to others — and our psychological states. Simply put, monitoring fluctuations of these neurochemicals in living brains has proved a persistent challenge.

Now, for the first time, UCLA scientists have attached nanoscale biochemical sensors, which are tuned to identify specific neurotransmitters, to a soft, implantable brain probe in order to continuously monitor these chemicals in real time. The new brain probe, described in a paper published in ACS Sensors, would allow scientists to track neurotransmitters in laboratory animals — and, ultimately, humans — during their day-to-day activities.

Tuesday, December 13, 2022

Pollution cleanup method destroys toxic “forever chemicals”

Ultraviolet light used for water treatment 
Photo Credit: UCR/Liu Lab

An insidious category of carcinogenic pollutants known as “forever chemicals” may not be so permanent after all.

University of California, Riverside, chemical engineering and environmental scientists recently published new methods to chemically break up these harmful substances found in drinking water into smaller compounds that are essentially harmless.

The patent-pending process infuses contaminated water with hydrogen, then blasts the water with high-energy, short-wavelength ultraviolet light. The hydrogen polarizes water molecules to make them more reactive, while the light catalyzes chemical reactions that destroy the pollutants, known as PFAS or poly- and per-fluoroalkyl substances.

This one-two punch breaks the strong fluorine-to-carbon chemicals bonds that make these pollutants so persistent and accumulative in the environment. In fact, the molecular destruction of PFAS increased from 10% to nearly 100% when compared to other ultraviolet water-treatment methods, while no other undesirable byproducts or impurities are generated, the UCR scientists reported in a paper recently published in the Journal of Hazardous Materials Letters.

Surveilling carbon sequestration: A smart collar to sense leaks

Sandia National Laboratories’ smart collar detecting a leak from a carbon dioxide storage reservoir.
 Animation Credit: Max Schwaber

Sandia National Laboratories engineers are working on a device that would help ensure captured carbon dioxide stays deep underground — a critical component of carbon sequestration as part of a climate solution.

Carbon sequestration is the process of capturing CO2 — a greenhouse gas that traps heat in the Earth’s atmosphere — from the air or where it is produced and storing it underground. However, there are some technical challenges with carbon sequestration, including making sure that the CO2 remains underground long term. Sandia’s wireless device pairs with tiny sensors to monitor for CO2 leaks and tell above-ground operators if one happens — and it lasts for decades.

“The world is trying a whole lot of different ways to reduce the production of CO2 to mitigate climate change,” said Andrew Wright, Sandia electrical engineer and project lead. “A complementary approach is to reduce the high levels of CO2 in the atmosphere by collecting a good chunk of it and storing it deep underground. The technology we’re developing with the University of Texas at Austin aims to determine whether the CO2 stays down there. What is special about this technology is that we’ll be monitoring it wirelessly and thus won’t create another potential path for leakage like a wire or fiber.”

Good vibrations turbo charge green hydrogen production

PhD researcher Yemima Ehrnst holding the acoustic device the research team used to boost hydrogen production, through electrolysis to split water.
Photo Credit: RMIT University

They say their invention offers a promising way to tap into a plentiful supply of cheap hydrogen fuel for transportation and other sectors, which could radically reduce carbon emissions and help fight climate change.

By using high-frequency vibrations to “divide and conquer” individual water molecules during electrolysis, the team managed to split the water molecules to release 14 times more hydrogen compared with standard electrolysis techniques.

Electrolysis involves electricity running through water with two electrodes to split water molecules into oxygen and hydrogen gases, which appear as bubbles. This process produces green hydrogen, which represents just a small fraction of hydrogen production globally due to the high energy required.

Most hydrogen is produced from splitting natural gas, known as blue hydrogen, which emits greenhouse gases into the atmosphere.

Monday, December 12, 2022

Researcher takes aim at turning yellow into green by recycling urine

Urine recycling is the goal of WVU researcher Kevin Orner’s study of a wastewater treatment system that can attach directly to a toilet, extracting valuable nutrients used as fertilizers.
Illustration Credit: Sheree Wentz / West Virginia University

The waste flushed down toilets could be a valuable source of resources and profits — and easier on the environment, according to a West Virginia University engineer’s research.

Kevin Orner, a Benjamin M. Statler College of Engineering and Mineral Resources assistant professor is developing a technology that can treat urine on site rather than at a remote, centralized wastewater treatment facility. The technology could reside underneath a toilet, enabling urine treatment to happen quickly and promoting the recovery of nitrogen, a nutrient that can be sold as a fertilizer.

Orner’s findings, published in the journal Environmental Technology, make urine recycling more feasible in terms of integration into existing infrastructure and could reduce the amount of nutrients that enter lakes and rivers. Excessive nutrient discharge can put aquatic ecosystems at risk by promoting the growth of algae that consume dissolved oxygen in the water.

The goal is to transform waste collection and treatment from an environmentally harmful service that costs money to an environmentally beneficial service that makes money.

Saturday, December 10, 2022

Hummingbird flight could provide insights for biomimicry in aerial vehicles

Hummingbirds have extreme aerial agility and flight forms, which is why many drones and other aerial vehicles are designed to mimic hummingbird movement. Using a novel modeling method, researchers gained new insights into how hummingbirds produce wing movement, which could lead to design improvements in flying robots.
Photo Credit: Zdeněk Macháček

Hummingbirds occupy a unique place in nature: They fly like insects but have the musculoskeletal system of birds. According to Bo Cheng, the Kenneth K. and Olivia J. Kuo Early Career Associate Professor in Mechanical Engineering at Penn State, hummingbirds have extreme aerial agility and flight forms, which is why many drones and other aerial vehicles are designed to mimic hummingbird movement. Using a novel modeling method, Cheng and his team of researchers gained new insights into how hummingbirds produce wing movement, which could lead to design improvements in flying robots.

Their results were published this week in the Proceedings of Royal Society B.

“We essentially reverse-engineered the inner working of the wing musculoskeletal system — how the muscles and skeleton work in hummingbirds to flap the wings,” said first author and Penn State mechanical engineering graduate student Suyash Agrawal. “The traditional methods have mostly focused on measuring activity of a bird or insect when they are in natural flight or in an artificial environment where flight-like conditions are simulated. But most insects and, among birds specifically, hummingbirds are very small. The data that we can get from those measurements are limited.”

Thursday, December 8, 2022

Intricate ‘snowflakes’ created in liquid metal

A snowflake-like zinc crystal synthesized in liquid gallium by researchers at UNSW Sydney.
Image Credit: Dr Jianbo Tang

Researchers, including those from UNSW Sydney, have synthesized complex symmetrical zinc crystals in liquid gallium which can potentially be used in a range of catalysis applications.

It’s beginning to look a lot like Christmas at UNSW Sydney’s School of Chemical Engineering where researchers have grown crystals made of zinc that look like snowflakes - inside a liquid metal.

The team predominantly used zinc metal dissolved in liquid gallium as the solvent, creating distinctive structures that often resembled those of six-branched snowflake crystals.

Apart from their structural beauty, these liquid metal-grown crystals can enable future processes for making catalytic materials for producing hydrogen from organic fuels. The metallic crystals can also be specially formulated, during their synthesis and extraction, to make semiconductors for electronic and optical devices of computers, mobile phones and solar cells of the future.

Cities on asteroids? It could work—in theory

In what they deem a “wildly theoretical” paper, Rochester researchers imagine covering an asteroid in a flexible, mesh bag made of ultralight and high-strength carbon nanofibers as the key to creating human cities in space.
Illustration Credit: University of Rochester | Michael Osadciw

Rochester scientists use physics and engineering principles to show how asteroids could be future viable space habitats.

This past year, Jeff Bezos launched himself into space, while Elon Musk funded a space flight for a non-astronaut crew. Space collaborations between government and private entities, including Musk’s SpaceX and Bezos’s Blue Origin have become increasingly common. But with the recent emergence of the so-called “New Space” movement, aerospace companies are working to develop low-cost access to space for everyone, not only billionaires.

For a future beyond Earth, however, humans need places to accommodate homes, buildings, and other structures for millions of people to live and work.

Right now, space cities exist only in science fiction. But are space cities feasible in reality? And, if so, how?

According to new research from University of Rochester scientists, our future may lie in asteroids.

In what they deem a “wildly theoretical” paper published in the journal Frontiers in Astronomy and Space Sciences, the researchers, including Adam Frank, the Helen F. and Fred H. Gowen Professor of Physics and Astronomy, and Peter Miklavčič, a PhD candidate in mechanical engineering and the paper’s first author, outline a plan for creating large cities on asteroids.

Wednesday, December 7, 2022

Wearable sensor could guide precision drug dosing

 The sensor uses microneedles that are made by cutting down clinical-grade acupuncture needles.
Image Credit: Emaminejad Lab/UCLA

For some of the powerful drugs used to fight infection and cancer, there’s only a small difference between a healing dose and a dose that’s large enough to cause dangerous side effects. But predicting that margin is a persistent challenge because different people react differently to medications — even to the same dose.

Currently, doctors can calibrate the amount of medication they administer in part by drawing blood to test the amount of medicine in a patient’s body. But results from those tests often take a day to process and only measure dosage at one or two moments in time, so they don’t help much when determining how to adjust dosage amounts in real time.

Now, a UCLA-led research team has developed a wearable patch that uses inexpensive microneedles to analyze the fluid between cells less than a millimeter underneath the skin and continuously record concentrations of medicine in the body. The technology could be a step toward improving doctors’ ability to administer precise medication doses.

In a study published in Science Advances, the investigators tested the system in rats that had been treated with antibiotics. Using data taken by the device within about 15 minutes after the medication was administered, the researchers reliably forecast how much of that drug would be effectively delivered to the animal’s system in total.

It’s colossal: Creating the world’s largest dilution refrigerator

Colossus will offer 5 cubic meters of space and cool components to around 0.01K.
Photo Credit: Ryan Postel, Fermilab

While the refrigerator in your kitchen gets cold enough to prevent your leftovers from spoiling, dilution refrigerators used for quantum computing research cool devices near the coldest physical temperature possible. Now at the U.S. Department of Energy’s Fermi National Accelerator Laboratory, researchers are building Colossus: It will be the largest, most powerful refrigerator at millikelvin temperatures ever created.

Fermilab is known for its massive experiments, and Colossus will fit right in. Researchers from the Fermilab-hosted Superconducting Quantum Materials and Systems Center need lots of room at cold temperatures to achieve their goal of building a state-of-the-art quantum computer.

Unlike a kitchen refrigerator, which compresses gases called refrigerants to cool food, a dilution refrigerator uses a mixture of helium isotopes to create temperatures close to absolute zero, or zero kelvin: the coldest temperature imaginable in physics, which is physically impossible to reach.

“With the cooling power and volume that Colossus will provide, SQMS researchers will have unprecedented space for our future quantum computer and many other quantum computing and physics experiments,” said Matt Hollister, the lead technical expert on this project. “Colossus is named after the first electronic programmable computer, which was constructed in the 1940s for codebreaking. It was a historic milestone in the history of computing and seemed like an appropriate name for the size of our new refrigerator.”

Tuesday, December 6, 2022

Researchers propose new structures to harvest untapped source of freshwater

“Eventually, we will need to find a way to increase the supply of fresh water as conservation and recycled water from existing sources, albeit essential, will not be sufficient to meet human needs. We think our newly proposed method can do that at large scales,” said Illinois professor Praveen Kumar. The illustration shows Kumar and his co-authors’ proposed approach for capturing moisture above ocean surfaces and transporting it to land for condensation. 
Illustration Credit: Courtesy Praveen Kumar and Nature Scientific Reports

Researchers said that an almost limitless supply of fresh water exists in the form of water vapor above Earth’s oceans, yet remains untapped. A new study from the University of Illinois Urbana-Champaign is the first to suggest an investment in new infrastructure capable of harvesting oceanic water vapor as a solution to limited supplies of fresh water in various locations around the world.

The study, led by civil and environmental engineering professor and Prairie Research Institute executive director Praveen Kumar, evaluated 14 water-stressed locations across the globe for the feasibility of a hypothetical structure capable of capturing water vapor from above the ocean and condensing it into fresh water – and do so in a manner that will remain feasible in the face of continued climate change.

Kumar, graduate student Afeefa Rahman and atmospheric sciences professor Francina Dominguez published their findings in the journal Nature Scientific Reports.

Monday, December 5, 2022

Consortium develops sustainable aircraft engines

Flying without pollutant emissions should be possible in the future.
Photo Credit: RUB, Marquard

A new drive technology should make air travel possible with a clear conscience.

In the face of climate change, many people get on the plane with a guilty conscience: the emission of climate-damaging carbon dioxide from the combustion of fossil fuels is high. An international consortium wants to change this: The aim of the "MYTHOS" project is to develop aircraft engines that can flexibly use various sustainably produced fuels up to pure hydrogen. The project called "Medium-range hybrid low-pollution flexi-fuel / hydrogen sustainable engine" will start from 1. January 2023 funded by the European Union for four years. The coordination is carried out by Prof. Dr. Francesca di Mare, holder of the professorship for thermal turbo machines and aircraft engines of the RUB.

The overarching goal to which the project team is committed is nothing less than the decarbonization of aviation. "We will be developing and demonstrating a groundbreaking design methodology for future short and medium-range civil engines that can use a wide range of liquid and gaseous fuels and ultimately pure hydrogen," said Francesca di Mare. The fuels for which the engines are to be designed include so-called Sustainable Aviation Fuels, or SAF for short: sustainably produced fuels that are not based on fossil fuels. In order to achieve these goals, the MYTHOS consortium develops a multidisciplinary modeling approach for the characterization of the relevant engine components and uses methods of machine learning.

Researchers developed a new cancer testing method that makes regular monitoring affordable

Asst Prof Cheow Lih Feng (right), his former PhD student Dr Elsie Cheruba (left) and their team have developed the Heatrich-BS assay, an affordable and highly sensitive blood test for cancer. This new testing method has strong potential to be used in regular cancer monitoring.
Photo Credit: National University of Singapore

The S$50 blood test has high sensitivity, comparable to the gold standard CT scan

Scientists from the National University of (NUS) have discovered a novel low-cost method of testing for cancers. Called the Heatrich-BS assay, this new test sequences clinical samples that have been heated in order to isolate cancer-specific signatures found in a patient’s blood.

The new method provides a promising non-invasive alternative to tissue biopsies. It costs around S$50 from start to finish, compared to other sequencing methods that can cost up to S$1,000 to conduct. Led by Assistant Professor Cheow Lih Feng, the team comprising researchers from the NUS Department of Biomedical Engineering under the College of Design and Engineering as well as the NUS Institute for Health Innovation & Technology, is now exploring industry partnerships to bring their technology to market.

“When you have a S$50 test, it opens up a lot of avenues because it is affordable, so you can do the test quite regularly,” said Asst Prof Cheow, pointing to the potential for their assay to be used in regular cancer monitoring.

Thursday, December 1, 2022

Researchers Develop Strategy to Thermally Stabilize Microneedle Vaccine Technology

Visual of the researcher's microneedle vaccine technology concept.
Illustration Credit: Thahn Nguyen

Researchers use sugar molecules to help eliminate the need for cold-chain storage, a common logistical hurdle for vaccine distribution

Researchers in the Department of Biomedical Engineering —a shared department between the UConn Schools of Dental Medicine, Medicine, and Engineering—unlocked a new strategy using sugar molecules to thermally stabilize their existing microneedle vaccine technology, eliminating the need for cold-chain storage.

Associate Professor Thanh Duc Nguyen from the Departments of Mechanical Engineering and Biomedical Engineering in the School of Engineering, reported this new development in a recent issue of Advanced Materials Technology. The work was led by Dr. Khanh Tran, Nguyen’s former UConn Ph.D. student currently at the Massachusetts Institute of Technology, and Dr. Tyler Gavitt, former UConn Ph.D. student currently at Duke University. Gavitt was a student of Associate Professor Steven Szczepanek in the Department of Pathobiology and Veterinary Science in the College of Agriculture, Health, and Natural Resources at UConn.

Typically, vaccinations against infectious diseases like COVID-19 require multiple painful, expensive and inconvenient injections, including a prime and several booster shots. The UConn researcher’s technology creates a self-administered microneedle patch which could be self-administered and only requires a single-time administration into skin—similar to a nicotine patch—to perform a release profile of vaccines, simulating the effect of multiple injections.

Wednesday, November 30, 2022

Better Than a Hole in the Head

Just as blood pressure informs heart health, intracranial pressure (ICP) helps indicate brain health. ICP sensing is the burgeoning focus of Jana Kainerstorfer's biomedical optics lab at Carnegie Mellon University. Her team is working to modernize ICP sensing approaches, which historically have been invasive and risky. Their noninvasive alternatives will ease the risk of infection, pain and medical expenses, as well as present new monitoring capabilities for patients with an array of brain injuries and conditions, from stroke to hydrocephalus.

Investigating pressure levels in the brain is a laborious task for health professionals and hasn't progressed much since the 1960s. Current practice involves drilling a hole into a patient's skull and placing a probe inside for continuous monitoring of ICP levels. It comes with the risk of infection and damaging the brain itself, and while valuable data is to have, ICP measurement is reserved only for the most critical of situations.

"At the core of it, what we've done is build a sensor alternative that doesn't require drilling a hole into the patient's head," said Kainerstorfer, an associate professor of biomedical engineering. "We recently published two papers that explore the use of optical sensors on the forehead for noninvasive ICP monitoring, using near-infrared spectroscopy and diffuse correlation spectroscopy. Both approaches represent huge strides in improving the patient experience and providing better tools to monitor pressure levels in the brain, which can be a key variable in both diagnosis and treatment decisions."

Featured Article

Low-cost device can measure air pollution anywhere

MIT researchers have made an open-source version of the “City Scanner” mobile pollution detector that lets people check air quality anywhere...

Top Viewed Articles