. Scientific Frontline: Environmental
Showing posts with label Environmental. Show all posts
Showing posts with label Environmental. Show all posts

Tuesday, January 24, 2023

Environment law fails to protect threatened species

The tiger quoll lost 82 per cent of its total referred habitat to projects considered unlikely to have a significant impact.
Photo Credit: JJ Harrison / Creative Commons Attribution-Share Alike 3.0 Unported

Federal environmental laws are failing to mitigate against Australia’s extinction crisis, according to University of Queensland research.

UQ PhD candidate Natalya Maitz led a collaborative project which analyzed potential habitat loss in Queensland and New South Wales and found the Environment Protection and Biodiversity Conservation 1999 (EPBC) Act is not protecting threatened species.

“The system designed to classify development projects according to their environmental impact is more or less worthless,” Ms. Maitz said.

“There’s no statistically significant difference between the amount of threatened habitat destroyed under projects deemed ‘significant’ or ‘not significant’ by the national biodiversity regulator.”

Under the EPBC Act, individuals or organizations looking to commence projects with a potentially ‘significant impact’ on protected species must seek further federal review and approval.

Traffic pollution impairs brain function

fMRI shows decreased functional connectivity in the brain following exposure to traffic pollution.
Image Credit: Courtesy of University of British Columbia

First-in-the-world study suggests that even brief exposure to air pollution has rapid impacts on the brain

A new study by researchers at the University of British Columbia and the University of Victoria has shown that common levels of traffic pollution can impair human brain function in only a matter of hours.

The peer-reviewed findings, published in the journal Environmental Health, show that just two hours of exposure to diesel exhaust causes a decrease in the brain’s functional connectivity – a measure of how different areas of the brain interact and communicate with each other. The study provides the first evidence in humans, from a controlled experiment, of altered brain network connectivity induced by air pollution.

“For many decades, scientists thought the brain may be protected from the harmful effects of air pollution,” said senior study author Dr. Chris Carlsten, professor and head of respiratory medicine and the Canada Research Chair in occupational and environmental lung disease at UBC. “This study, which is the first of its kind in the world, provides fresh evidence supporting a connection between air pollution and cognition.”

Monday, January 23, 2023

Scientists Unveil Least Costly Carbon Capture System to Date

Chemist Dave Heldebrant, a recently selected fellow of the American Chemical Society who holds a joint appointment with Washington State University, has helped design several solvents that can deftly capture carbon dioxide molecules before they reach Earth’s atmosphere. 
Photo Credit: Andrea Starr | Pacific Northwest National Laboratory

The need for technology that can capture, remove and repurpose carbon dioxide grows stronger with every CO2 molecule that reaches Earth’s atmosphere. To meet that need, scientists at the Department of Energy’s Pacific Northwest National Laboratory have cleared a new milestone in their efforts to make carbon capture more affordable and widespread. They have created a new system that efficiently captures CO2—the least costly to date—and converts it into one of the world’s most widely used chemicals: methanol.

Snaring CO2 before it floats into the atmosphere is a key component in slowing global warming. Creating incentives for the largest emitters to adopt carbon capture technology, however, is an important precursor. The high cost of commercial capture technology is a longstanding barrier to its widespread use.

PNNL scientists believe methanol can provide that incentive. It has many uses as a fuel, solvent, and an important ingredient in plastics, paint, construction materials and car parts. Converting CO2 into useful substances like methanol offers a path for industrial entities to capture and repurpose their carbon.

Pheasants at risk on unfamiliar ground

Male pheasant
Researchers assessed the performance of 126 captive-reared pheasant chicks on a range of cognitive puzzles
Photo Credit: Jan Temmel

Pheasants are most likely to be killed by predators on unfamiliar ground, according to new research involving the University of Plymouth. 

A new study showed most animals live within a certain area, known as their “home range”, and they know the central areas better than the edges.

To examine how this impacted their outcomes, researchers assessed the performance of 126 captive-reared pheasant chicks on a range of cognitive puzzles. They were then released into the wild and tracked using a high-precision tagging system.

About 40% were killed by predators during the six-month study period – almost all by foxes – and the pheasants were far more likely to die towards the edge of their range.

The findings show this was due to inexperience in these areas, because other birds that knew the same spots well were not likely to die there.

Brunt Ice Shelf in Antarctica calves giant iceberg

Chasm-1 remained dormant for many years but has now created a new iceberg.
Photo Credit: British Antarctic Survey

A huge iceberg (1550 km²), almost the size of Greater London, has broken off the 150m thick Brunt Ice Shelf. It calved after cracks that have been developing naturally over the last few years extended across the entire ice shelf, causing the new iceberg to break free. This occurred on Sunday 22 January between 19.00 and 20.00 UTC during spring tide. 

The iceberg calved when the crack known as Chasm-1 fully extended through the ice shelf. The break off is the second major calving from this area in the last two years and has taken place a decade after scientists at British Antarctic Survey (BAS) first detected growth of vast cracks in the ice. 

The Brunt Ice Shelf is the location of BAS Halley Research Station. BAS glaciologists, who have been monitoring the behavior of the ice shelf, say that the area of the ice shelf where the research station is located currently remains unaffected by the recent calving events.  

 The glaciological structure of the Brunt Ice Shelf is complex, and the impact of calving events is unpredictable.  In 2016, BAS took the precaution of relocating Halley Research Station 23 km inland of Chasm-1 after it began to widen.  

Grassland Ecosystems Become More Resilient with Age

In diverse plant communities, evolution increases the division of labor between species over time.
Photo Credit: Alexandra Weigelt

Reduced biodiversity affects the stability of the entire ecosystem. A long-term experiment now shows that grassland plant communities with multiple species need about 10 years to adjust to each other and produce an even amount of biomass again.

Recent experiments have shown that the loss of species from a plant community can reduce ecosystem functions and services such as productivity, carbon storage and soil health. This reduced functioning may also destabilize the ecosystem in its ability to maintain ecosystem functions and services in the long term. However, assessing this is only possible if experiments can be maintained for a sufficient length of time.

Stable biomass production after 10 years

In a new study, researchers from the University of Zurich and colleagues from Leipzig and Jena analyzed the stability of plant biomass production over two decades in one of the longest-running grassland biodiversity experiments in the world, the Jena Experiment in Germany. After more than a decade, plant species in more diverse experimental communities complemented each other in producing stable biomass at the community level. At low plant diversity, by contrast, this “compensatory” effect was observed and community biomass varied much more from year to year. During the first decade of the experiment, species-rich communities had not yet stabilized because of large fluctuations in species populations. This long-term research shows that biodiversity plays an increasingly important role in stabilizing ecosystem productivity over time as plant communities mature.

Sunday, January 22, 2023

Traded species have distinctive life histories with extended reproductive lifecycles

Invasive species can cause huge environmental problems and monetary costs
Photo Credit: Pierre Bamin

A new study by researchers from Durham University, UK, Queen’s University Belfast, UK, University of Extremadura, Spain and Swansea University, UK have revealed that vertebrate species involved in the live wildlife trade have distinctive life history traits, biological characteristics that determine the frequency and timing of reproduction.

Researchers discovered that traded species produce large numbers of offspring across long reproductive lifespans, an unusual profile that is likely financially advantageous for trades involving captive breeding such as the pet, food and fur/skin trades.

Traded species that have also been introduced into non-native areas have a more extreme version of this same life history profile, suggesting that species most likely to become problematic invaders are at a heightened risk of trade and release.

The study suggests that humans favor species with high reproductive output for trade and release, which are the very species likely to become problematic invaders in future.

Researchers point out that life history traits are therefore potentially useful for predicting future invasions.

Friday, January 20, 2023

Unprecedented Levels of High-Severity Fire Burn in Sierra Nevada Forests

A firefighter helps containment efforts during the Creek Fire response in 2020.
Photo Credit: USDA, Pacific Southwest Forest Service

High-severity wildfire is increasing in Sierra Nevada and Southern Cascade forests and has been burning at unprecedented rates compared to the years before Euro-American settlement, according to a study from the Safford Lab at the University of California, Davis, and its collaborators. Those rates have especially shot up over the past decade. 

For the study, published in the journal Ecosphere, scientists analyzed fire severity data from the U.S. Forest Service and Google Earth Engine, across seven major forest types. 

They found that in low- and middle-elevation forest types, the average annual area that burned at low-to-moderate severity has decreased from more than 90% before 1850 to 60-70% today. 

At the same time, the area burned annually at high severity has nearly quintupled, rising from less than 10% to 43% today. (High-severity burns are those where more than 95% of aboveground tree biomass is killed by fire.)

RUDN University chemist creates nanocatalysts for vanillin synthesis

Illustration Credit: RUDN University

RUDN University chemist proposed a new method to create catalysts on a porous silicon matrix with metal nanoparticles. Efficient catalysts for organic reactions are obtained, for example, for the synthesis of vanillin, which is in demand in the food and perfume industry.

Only 1% of the annually produced worldwide 20 thousand tons of vanillin is made from natural vanilla. Almost all vanillin in seasonings, pastries, pharmaceuticals and cosmetics is synthesized by chemical protocols. Usually, petrochemical raw materials are used for this, but synthesis from inexpensive plant biomass is also possible. The main ingredient is lignin. This polymer is widely available as it is part of the trees, and it is obtained in the production of paper as a by-product. It is easy to isolate eugenol and other substances suitable for the synthesis of vanillin from lignin, but the next step is challenging. In oxidation reactions, along with vanillin, several by-products similar to it in structure are formed. It is difficult to separate them. The RUDN University chemist proposed a number of eco-friendly nanocatalysts that will allow obtaining more vanillin from plant raw materials than traditional methods.

Algae Can Help Dispose of Hazardous Substances and Produce Bioethanol

Algae can absorb zinc, magnesium, iron, aluminum, silicon and lead.
Photo Credit: Rodion Narudinov

Scientists of the Ural Federal University have developed a technology for the production of environmentally friendly bioethanol fuel using waste heat from thermal power plants (TPP) and combined heat and power plants (CHPP) and freshwater algae produced in large quantities in cooling ponds. The use of this technology leads to a reduction in harmful emissions and makes energy production more efficient. The developers emphasize that the technology signifies a transition from hydrocarbon to green energy. An article describing the technology has been published in the International Journal of Hydrogen Energy.

TPPs and CHPPs are the main suppliers of heat, light, and hot water; at the same time, they are sources of greenhouse gas emissions generated during fuel combustion and saturated with carbon dioxide, soot, unburned particles, and various chemical substances. Another byproduct is the so-called waste heat - water heated during the cooling of superheated steam, rotating turbines of TPPs and CHPPs. The waste heat, in the form of steam, evaporates into the atmosphere in large quantities and is discharged together with industrial effluents into storage ponds. Process water containing solutions of hydrochloric acid, caustic soda, ammonia, ammonium salts, iron and other substances is discharged after flushing the flue gases and boiler units.

Researchers unravel the complex reaction pathways in zero carbon fuel synthesis

Chemical plant
Photo Credit: Robert Jones

When the eCO2EP: A chemical energy storage technology project started in 2018, the objective was to develop ways of converting carbon dioxide emitted as part of industrial processes into useful compounds, a process known as electrochemical CO2 reduction (eCO2R)

While eCO2R is not a new technique, the challenge has always been the inability to control the end products. Now, researchers from the University of Cambridge have outlined how carbon isotopes can be used to trace intermediates during the process, which will allow scientists to create more selective catalysts, control product selectivity, and promote eCO2R as a more promising production method for chemicals and fuels in the low-carbon economy. Their results are reported in the journal Nature Catalysis.

The project was led by Professor Alexei Lapkin, from Cambridge’s Centre for Advanced Research and Education in Singapore (CARES Ltd) and Professor Joel Ager, from the Berkeley Education Alliance for Research in Singapore (BEARS Ltd). Both organizations are part of the Campus for Research Excellence and Technological Enterprise (CREATE) funded by Singapore’s National Research Foundation.

Tracing the flow of water with DNA

Oliver Schilling analyzing spring water at Mount Fuji.
Photo Credit: T. Schilling

Environmental DNA analysis of microbial communities can help us understand how a particular region’s water cycle works. Basel hydrogeologist Oliver Schilling recently used this method to examine the water cycle on Mount Fuji. His results have implications for Switzerland as well.

Where does the water come from that provides drinking water to people in a particular region? What feeds these sources and how long does it take for groundwater to make its way back up to the surface? This hydrological cycle is a complex interplay of various factors. A better grasp of the system allows us to understand, for example, why pollution is worse in some spots than others, and it can help us implement sustainable water management policies and practices.

Environmental DNA (eDNA) provides some important data to improve our understanding. In combination with the evaluation of other natural tracers – noble gases, for example – this microbial data provides important glimpses into the flow, circulation and functioning of complex groundwater systems. “It’s a vast toolbox that’s new to our field of research,” says Oliver Schilling, Professor of Hydrogeology at the University of Basel and at Eawag, the Swiss Federal Institute of Aquatic Science and Technology. Quantitative hydrogeology maps out where and how quickly new groundwater will accumulate.

Magnetic method to clean PFAS contaminated water

Researchers at The University of Queensland have pioneered a simple, fast and effective technique to remove PFAS chemicals from water.  

Using a magnet and a reusable absorption aid that they developed, polymer chemist Dr Cheng Zhang and PhD candidate Xiao Tan at the Australian Institute for Bioengineering and Nanotechnology have cleared 95 per cent of per- and polyfluoroalkyl substances (PFAS) from a small amount of contaminated water in under a minute.

“Removing PFAS chemicals from contaminated waters is urgently needed to safeguard public and environmental health,” Dr Zhang said.

“But existing methods require machinery like pumps, take a lot of time and need their own power source.

“Our method shows it is possible to remove more of these chemicals in a way that is faster, cheaper, cleaner, and very simple.

The visibility of stars in the night sky quickly decreases

These astronaut photos of parts of Calgary (Canada) show examples of how lighting changed between 2010 and 2021. Here is a picture from 2010.
 Image Credit: Courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center, georeferencing by GFZ Potsdam

This is shown by a science study based on a worldwide Citizen Science project on light pollution, which has collected data in the past eleven years.

People see fewer and fewer stars in the night sky worldwide. The cause is probably light pollution in the evening and night hours, which increases by seven to ten percent per year. This rate of change is greater than satellite measurements of artificial light missions on Earth suggested. This is the finding of a study in the science magazine, carried out by a research group led by Dr. Christopher Kyba from the German GeoForschungsZentrum GFZ and the Ruhr University Bochum with researchers from the GFZ and the NOIRLab of the US National Science Foundation. As part of the Citizen Science project "Globe at Night", they evaluated more than 50,000 observations with the naked eye of civil scientists around the world from 2011 to 2022. The study also shows that the Citizen Science data are an important addition to previous measurement methods.

Thursday, January 19, 2023

Low-impact human recreation changes wildlife behavior

Camera trap images revealed how animals changed their use of areas around hiking trails in Glacier National Park during and after a COVID-19 closure.
Photo Credit: courtesy of Mammal Spatial Ecology and Conservation Lab at Washington State University.

Even without hunting rifles, humans appear to have a strong negative influence on the movement of wildlife. A study of Glacier National Park hiking trails during and after a COVID-19 closure adds evidence to the theory that humans can create a “landscape of fear” like other apex predators, changing how species use an area simply with their presence.

Washington State University and National Park Service researchers found that when human hikers were present, 16 out of 22 mammal species, including predators and prey alike, changed where and when they accessed areas. Some completely abandoned places they previously used, others used them less frequently, and some shifted to more nocturnal activities to avoid humans.

“When the park was open to the public, and there were a lot of hikers and recreators using the area, we saw a bunch of changes in how animals were using that same area,” said Daniel Thornton, WSU wildlife ecologist and senior author on the study published in the journal Scientific Reports. “The surprising thing is that there’s no other real human disturbance out there because Glacier is such a highly protected national park, so these responses really are being driven by human presence and human noise.”

Knowledge is Flowing: Connecting the Dots and Chipping Away at Modeling Uncertainty

UConn researchers are working to improve the modeling for understanding how water moves through the ecosystem
Photo Credit: SFLORG stock image

When working to find solutions for complex problems, it can be easy to focus either too broadly or too narrowly. Oftentimes the answers lie somewhere in the middle.

UConn Department of Natural Resources and the Environment researcher James Knighton and his group are working to connect two fields of research – one with a global focus, the other with a local focus — to overcome a disconnect and improve models used for studying how water moves through the earth’s systems. The study is published in the Journal of Advances in Modeling Earth Systems.

Knighton explains that projections for climate change over the next 50 to 100 years rely on complex models called general circulation models or earth systems models.

“In those models, people try to simulate the flow of the atmosphere, the flow of the ocean, water exchanges with the continents, how that water moves as freshwater out to the ocean, and how a significant portion of it moves back to the atmosphere. About half of all rain that falls on land goes back to the atmosphere directly and most of that through plants.”

Wednesday, January 18, 2023

New study to tackle role of environmental contamination in the growing problem of antibiotic resistance

Photo Credit: Volodymyr Hryshchenko

Environmental factors, including pollution, that might help ‘superbugs’ become resistant to antibiotics is set to be investigated by the University of Surrey. Findings will help address this serious public health problem by identifying trends and emerging areas that require further research.

During this new eighteen-month study, funded by the One Health European Joint Project, Surrey researchers will embark on work to catalogue the evidence of the effects of environmental factors on antibiotic resistance.  

Dr Giovanni Lo Iacono, Senior Lecturer in Biostatistics and Epidemiology at the University of Surrey, said:
“The World Health Organization has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. The danger of it cannot be underestimated as it limits treatment options for those who need it most and means that certain infections can become uncontrollable.”

Antibiotic resistance, which is a form of wider antimicrobial resistance, is the ability of bacteria to withstand antibiotics and has led to increasing treatment failure for commonplace infections. Misuse and overuse of antibiotics were previously believed to be the sole cause of this threat. However, the role of environmental factors such as contamination of water or soil by antibiotics, potentially impacting the food chain, is now being recognized.

Tuesday, January 17, 2023

Wearable, Printable, Shapeable Sensors Detect Pathogens and Toxins in the Environment

“Using the sensor, we can pick up trace levels of airborne SARS-CoV-2, or we can imagine modifying it to adapt to whatever the next public health threat might be,” Omenetto said. Here, a sensor is embedded on a drone.
Photo Credit: Courtesy of Silklab

Researchers at Tufts School of Engineering have developed a way to detect bacteria, toxins, and dangerous chemicals in the environment using a biopolymer sensor that can be printed like ink on a wide range of materials, including wearable items such as gloves, masks, or everyday clothing.

Using an enzyme similar to that found in fireflies, the sensor glows when it detects these otherwise invisible threats. The new technology is described in the journal Advanced Materials.

The biopolymer sensor, which is based on computationally designed proteins and silk fibroin extracted from the cocoons of the silk moth Bombyx Mori, can also be embedded in films, sponges, and filters, or molded like plastic to sample and detect airborne and waterborne dangers, or used to signal infections or even cancer in our bodies.

The researchers demonstrated how the sensor emits light within minutes as it detects the SARS-CoV-2 virus that causes COVID, anti-hepatitis B virus antibodies, the food-borne toxin botulinum neurotoxin B, or human epidermal growth factor receptor 2 (HER2), an indicator of the presence of breast cancer.

Increased atmospheric dust is masking greenhouse gases’ warming effect

A visualization from space of the “Godzilla” dust storm on June 18, 2020, when desert dust traveled from the Sahara to North America. A UCLA study finds that an increase in microscopic dust in the atmosphere has concealed the full extent of greenhouse gases’ potential for warming the planet.
Image Credit: NASA Scientific Visualization Studio  

A new study shows that global atmospheric dust — microscopic airborne particles from desert dust storms — has a slight overall cooling effect on the planet that has hidden the full amount of warming caused by greenhouse gases.

The UCLA research, published today in Nature Reviews Earth and Environment, found that the amount of desert dust has grown roughly 55% since the mid-1800s, which increased the dust’s cooling effect.

This study is the first to demonstrate the overall cooling effect of atmospheric desert dust. Some effects of atmospheric dust warm the planet, but because other effects of dust actually counteract warming — for example by scattering sunlight back into space and dissipating high clouds that warm the planet — the study calculated that dust’s overall effect is a cooling one.

Should dust levels decline — or even simply stop growing — warming could ramp up, said UCLA atmospheric physicist Jasper Kok, the study’s lead author.

Climate Change Likely to Uproot More Amazon Trees

Members of NGEE-Tropics visit what they named “Blowdown Gardens,” an area that experienced windthrow near one of their field sites in the Amazon. Researchers have found a relationship between atmospheric conditions and large areas of tree death.
Photo Credit: Charlie Koven/Berkeley Lab

Tropical forests are crucial for sucking up carbon dioxide from the atmosphere. But they’re also subject to intense storms that can cause “windthrow” – the uprooting or breaking of trees. These downed trees decompose, potentially turning a forest from a carbon sink into a carbon source.

A new study finds that more extreme thunderstorms from climate change will likely cause a greater number of large windthrow events in the Amazon rainforest. This is one of the few ways that researchers have developed a link between storm conditions in the atmosphere and forest mortality on land, helping fill a major gap in models.

“Building this link between atmospheric dynamics and damage at the surface is very important across the board,” said Jeff Chambers, a senior faculty scientist at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), and director of the Next Generation Ecosystem Experiments (NGEE)-Tropics project, which performed the research. “It’s not just for the tropics. It’s high-latitude, low-latitude, temperate-latitude, here in the U.S.”

Featured Article

Adipose tissue as a culprit: How obesity leads to diabetes

A high-fat diet leads to obesity and the development of diabetes. Photo Credit:  Muffin Creatives A research team at the University of Basel...

Top Viewed Articles