. Scientific Frontline: Microtechnology
Showing posts with label Microtechnology. Show all posts
Showing posts with label Microtechnology. Show all posts

Monday, December 15, 2025

Surfing on the waves of the microcosm

A particle (red sphere) is guided from left to its destination (right) using a laser trap (double-cone) by means of a protocol developed in the study, which is described by the parameter λ. A known time-dependent external force field F (t) acts on this environment. The optimised protocol exploits this force field in a way that extracts the maximum amount of work. This can be applied to various external fields, to active particles and to micro-robot transport problems. 
Image Credit: HHU/Kristian S. Olsen

Conditions can get rough in the micro- and nanoworld. To ensure that e.g. nutrients can still be optimally transported within cells, the minuscule transporters involved need to respond to the fluctuating environment. Physicists at Heinrich Heine University Düsseldorf (HHU) and Tel Aviv University in Israel have used model calculations to examine how this can succeed. They have now published their results – which could also be relevant for future microscopic machines – in the scientific journal Nature Communications

When planning an ocean crossing, sailors seek a course, which makes optimum use of favorable wind and ocean currents, and maneuver to save time and energy. They also react to random fluctuations in wind and currents and take advantage of fair winds and waves. Such considerations regarding energy costs are also important for transport processes at the micro- and nanoscale. For example, molecular motors should use as little energy as possible when transporting nutrients from A to B between and within biological cells.  

Saturday, December 6, 2025

Microtechnology: In-Depth Description

Image Credit: Scientific Frontline

Microtechnology is the specific branch of engineering and science that deals with the design, fabrication, and integration of functional structures and devices with dimensions on the order of the micrometer (μm), typically ranging from 1 to 100 micrometers.

Situated on the dimensional scale between macro-engineering and nanotechnology, the primary goal of microtechnology is the miniaturization of physical systems to enhance performance, reduce power consumption, and enable mass production of complex devices at a low cost. It fundamentally underpins the modern ability to integrate sensing, processing, and actuating functions into single, microscopic chips.

Thursday, September 18, 2025

Light-powered motor fits inside a strand of hair

The second gear from the right has an optical metamaterial that react to laserlight and makes the gear move. All gears are made in silica directly on a chip. Each gear is about 0.016 mm in diameter.
Photo Credit: Gan Wang

Researchers at the University of Gothenburg have made light-powered gears on a micrometer scale. This paves the way for the smallest on-chip motors in history, which can fit inside a strand of hair.

Gears are everywhere – from clocks and cars to robots and wind turbines. For more than 30 years, researchers have been trying to create even smaller gears in order to construct micro-engines. But progress stalled at 0.1 millimeters, as it was not possible to build the drive trains needed to make them move any smaller.

Researchers from Gothenburg University, among others, have now broken through this barrier by ditching traditional mechanical drive trains and instead using laser light to set the gears in motion directly.

Featured Article

What Is: The Phanerozoic Eon

Defining the Eon of Complex Life Image Credit: Scientific Frontline / AI generated The Phanerozoic Eon constitutes the current and most biol...

Top Viewed Articles