. Scientific Frontline: Technology
Showing posts with label Technology. Show all posts
Showing posts with label Technology. Show all posts

Monday, January 16, 2023

Tens of thousands of possible catalysts on the diameter of a hair

The results of the sputtering process can be seen under the light microscope.
Image Credit: © Lars Banko

New methods make it possible to produce countless new materials in one step and to examine them quickly.

When looking for catalysts for the energy transition, materials made from at least five elements are particularly promising. Only there are theoretically millions of them - how do you find the most powerful? A Bochum research team led by Prof. Dr. Alfred Ludwig, head of the Materials Discovery and Interfaces chair, MDI, managed to accommodate all possible combinations of five elements on one carrier in a single step. In addition, the researchers developed a method to analyze the electrocatalytic potential of each of the combinations in this micromaterial library in high throughput. In this way, they want to speed up the search for potential catalysts many times over. The team at the Ruhr University Bochum reports in the journal Advanced Materials.

Friday, January 6, 2023

Lithium-sulfur batteries are one step closer to powering the future

Image shows microstructure and elemental mapping (silicon, oxygen and sulfur) of porous sulfur-containing interlayer after 500 charge-discharge cycles in lithium-sulfur cell.
Image Credit: Guiliang Xu/Argonne National Laboratory.

Batteries are everywhere in daily life, from cell phones and smart watches to the increasing number of electric vehicles. Most of these devices use well-known lithium-ion battery technology. And while lithium-ion batteries have come a long way since they were first introduced, they have some familiar drawbacks as well, such as short lifetimes, overheating and supply chain challenges for certain raw materials.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory are researching solutions to these issues by testing new materials in battery construction. One such material is sulfur. Sulfur is extremely abundant and cost effective and can hold more energy than traditional ion-based batteries.

In a new study, researchers advanced sulfur-based battery research by creating a layer within the battery that adds energy storage capacity while nearly eliminating a traditional problem with sulfur batteries that caused corrosion.

Wednesday, January 4, 2023

Researchers detect fluoride in water with new simple color change test

Photo Credit: Henryk Niestrój

Test is first to use artificial cell sensors to detect environmental contaminant

A team of synthetic biologists at Northwestern is developing a sensor platform that will be able to detect a range of environmental and biological targets in real-world samples.

Environmental contaminants like fluoride, lead and pesticides exist all around and even within us. While researchers have simple ways to measure concentrations of such contaminants inside lab environments, levels are much more difficult to test in the field. That’s because they require costly specialized equipment.

Recent efforts in synthetic biology have leveraged cellular biosensors to both detect and report environmental contaminants in a cost-effective and field-deployable manner. Even as progress is being made, scientists have struggled to answer the question of how to protect sensor components from substances that naturally exist in extracted samples.

Self-powered, printable smart sensors created from emerging semiconductors could mean cheaper, greener Internet of Things

Simon Fraser University professor Vincenzo Pecunia
Photo Credit: Courtesy of Simon Fraser University

Creating smart sensors to embed in our everyday objects and environments for the Internet of Things (IoT) would vastly improve daily life—but requires trillions of such small devices. Simon Fraser University professor Vincenzo Pecunia believes that emerging alternative semiconductors that are printable, low-cost and eco-friendly could lead the way to a cheaper and more sustainable IoT.

Leading a multinational team of top experts in various areas of printable electronics, Pecunia has identified key priorities and promising avenues for printable electronics to enable self-powered, eco-friendly smart sensors. His forward-looking insights are outlined in his paper published on Dec. 28 in Nature Electronics.

“Equipping everyday objects and environments with intelligence via smart sensors would allow us to make more informed decisions as we go about in our daily lives,” says Pecunia. “Conventional semiconductor technologies require complex, energy-intensity, and expensive processing, but printable semiconductors can deliver electronics with a much lower carbon footprint and cost, since they can be processed by printing or coating, which require much lower energy and materials consumption.”

Tuesday, January 3, 2023

Chip Circuit for Light Could Be Applied to Quantum Computations

Future versions of the new photonic circuits will feature low-loss waveguides—the channels through which the single photons travel--some 3 meters long but tightly coiled to fit on a chip. The long waveguides will allow researchers to more precisely choose the time intervals (Δt) when photons exit different channels to rendezvous at a particular location.
Illustration Credit: NIST

The ability to transmit and manipulate the smallest unit of light, the photon, with minimal loss, plays a pivotal role in optical communications as well as designs for quantum computers that would use light rather than electric charges to store and carry information.

Now, researchers at the National Institute of Standards and Technology (NIST) and their colleagues have connected on a single microchip quantum dots — artificial atoms that generate individual photons rapidly and on-demand when illuminated by a laser — with miniature circuits that can guide the light without significant loss of intensity.

To create the ultra-low-loss circuits, the researchers fabricated silicon- nitride waveguides—the channels through which the photons traveled—and buried them in silicon dioxide. The channels were wide but shallow, a geometry that reduced the likelihood that photons would scatter out of the waveguides. Encapsulating the waveguides in silicon dioxide also helped to reduce scattering.

Researchers Demonstrate New Strain Sensors in Health Monitoring, Machine Interface Tech

Image Credit: Shuang Wu.

Researchers at North Carolina State University have developed a stretchable strain sensor that has an unprecedented combination of sensitivity and range, allowing it to detect even minor changes in strain with greater range of motion than previous technologies. The researchers demonstrated the sensor’s utility by creating new health monitoring and human-machine interface devices.

Strain is a measurement of how much a material deforms from its original length. For example, if you stretched a rubber band to twice its original length, its strain would be 100%.

“And measuring strain is useful in many applications, such as devices that measure blood pressure and technologies that track physical movement,” says Yong Zhu, corresponding author of a paper on the work and the Andrew A. Adams Distinguished Professor of Mechanical and Aerospace Engineering at NC State.

“But to date there’s been a trade-off. Strain sensors that are sensitive – capable of detecting small deformations – cannot be stretched very far. On the other hand, sensors that can be stretched to greater lengths are typically not very sensitive. The new sensor we’ve developed is both sensitive and capable of withstanding significant deformation,” says Zhu. “An additional feature is that the sensor is highly robust even when over-strained, meaning it is unlikely to break when the applied strain accidently exceeds the sensing range.”

Monday, December 19, 2022

The Donnan Potential, Revealed at Last

Staff scientist Ethan Crumlin at Berkeley Lab's Advanced Light Source.
Photo Credit: Marilyn Sargent/Berkeley Lab

The Donnan electric potential arises from an imbalance of charges at the interface of a charged membrane and a liquid, and for more than a century it has stubbornly eluded direct measurement. Many researchers have even written off such a measurement as impossible.

But that era, at last, has ended. With a tool that’s conventionally used to probe the chemical composition of materials, scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) recently led the first direct measurement of the Donnan potential.

“We were naïve enough to believe we could do the impossible.”
Ethan Crumlin, Berkeley Lab staff scientist, Advanced Light Source (ALS)

Crumlin and his collaborators recently reported the measurement in Nature Communications.

Such a measurement could yield new insights in many areas that focus on membranes. The Donnan potential plays a critical role in transporting ions through a cellular membrane, for example, which ties it to biological functions ranging from muscle contractions to neural signaling. Ion exchange membranes are also important in energy storage strategies and water purification technologies.

Thursday, December 15, 2022

Quenchbody Immunosensors Pave the Way to Quick and Sensitive COVID-19 Diagnostics


A new immunosensor based on Quenchbody technology shows great potential as a fast, inexpensive, and convenient tool to detect SARS-CoV-2. Developed by scientists at Tokyo Institute of Technology (Tokyo Tech) and Tokyo Medical and Dental University (TMDU), this highly efficient diagnostic approach will be useful not only for point-of-care testing, but also for high-throughput epidemiological studies of COVID-19 and other emerging infectious diseases.

The double-tagged Quenchbody immunosensor becomes fluorescent when its target antigen—the nucleocapsid protein from SARS-CoV-2—binds at the antigen-binding region of the antibody fragments. This approach is fast, cost-effective, and convenient to use in practice, making it ideal for point-of-care testing as well as batch processing of patient samples. 

The incredibly fast spread of COVID-19 throughout the world brought to light a very important fact: we need better methods to diagnose infectious diseases quickly and efficiently. During the early months of the pandemic, polymerase chain reaction (PCR) tests were one of the most widely used techniques to detect COVID-19. However, these viral RNA-based techniques require expensive equipment and reaction times longer than an hour, which renders them less than ideal for point-of-care testing.

Wednesday, December 14, 2022

Laser controls ultra-fast water switches

The water is fanned out by a specially developed nozzle. Then the laser is passed through.
Photo Credit: Adrian Buchmann

Researchers are introducing a completely new concept for switches with unprecedented speed.

Researchers at the Ruhr University Bochum have developed an ultra-fast circuit based on water. Thanks to a short but strong laser pulse, the water can be reached within less than a billionth of a second (10th-12 Seconds) in a conductive state and behaves almost like a metal during this time. This makes the circuit faster than the fastest known switching speed of a semiconductor to date. Adrian Buchmann, Dr. Claudius Hoberg and Dr. Fabio Novelli from the Ruhr Explores Solvation Cluster of Excellence, in short RESOLV, report in the journal APL Photonics December 2022.

Laser lets the water behave like a fast switch

All computer arithmetic operations are based on circuits. The speed at which a component can switch between states zero and one ultimately determines the speed of the computer. Semiconductors that enable electrical circuits are installed in current computers. "They are naturally limited in speed," explains Claudius Hoberg.

Tuesday, December 13, 2022

National Ignition Facility achieves fusion ignition

The target chamber of LLNL’s National Ignition Facility, where 192 laser beams delivered more than 2 million joules of ultraviolet energy to a tiny fuel pellet to create fusion ignition on Dec. 5, 2022.
Photo Credit: Lawrence Livermore National Laboratory

The U.S. Department of Energy (DOE) and DOE’s National Nuclear Security Administration (NNSA) today announced the achievement of fusion ignition at Lawrence Livermore National Laboratory (LLNL) — a major scientific breakthrough decades in the making that will pave the way for advancements in national defense and the future of clean power. On Dec. 5, a team at LLNL’s National Ignition Facility (NIF) conducted the first controlled fusion experiment in history to reach this milestone, also known as scientific energy breakeven, meaning it produced more energy from fusion than the laser energy used to drive it. This first-of-its-kind feat will provide unprecedented capability to support NNSA’s Stockpile Stewardship Program and will provide invaluable insights into the prospects of clean fusion energy, which would be a game-changer for efforts to achieve President Biden’s goal of a net-zero carbon economy.

“This is a landmark achievement for the researchers and staff at the National Ignition Facility who have dedicated their careers to seeing fusion ignition become a reality, and this milestone will undoubtedly spark even more discovery,” said U.S. Secretary of Energy Jennifer M. Granholm. “The Biden-Harris Administration is committed to supporting our world-class scientists — like the team at NIF — whose work will help us solve humanity’s most complex and pressing problems, like providing clean power to combat climate change and maintaining a nuclear deterrent without nuclear testing.”

Pollution cleanup method destroys toxic “forever chemicals”

Ultraviolet light used for water treatment 
Photo Credit: UCR/Liu Lab

An insidious category of carcinogenic pollutants known as “forever chemicals” may not be so permanent after all.

University of California, Riverside, chemical engineering and environmental scientists recently published new methods to chemically break up these harmful substances found in drinking water into smaller compounds that are essentially harmless.

The patent-pending process infuses contaminated water with hydrogen, then blasts the water with high-energy, short-wavelength ultraviolet light. The hydrogen polarizes water molecules to make them more reactive, while the light catalyzes chemical reactions that destroy the pollutants, known as PFAS or poly- and per-fluoroalkyl substances.

This one-two punch breaks the strong fluorine-to-carbon chemicals bonds that make these pollutants so persistent and accumulative in the environment. In fact, the molecular destruction of PFAS increased from 10% to nearly 100% when compared to other ultraviolet water-treatment methods, while no other undesirable byproducts or impurities are generated, the UCR scientists reported in a paper recently published in the Journal of Hazardous Materials Letters.

Surveilling carbon sequestration: A smart collar to sense leaks

Sandia National Laboratories’ smart collar detecting a leak from a carbon dioxide storage reservoir.
 Animation Credit: Max Schwaber

Sandia National Laboratories engineers are working on a device that would help ensure captured carbon dioxide stays deep underground — a critical component of carbon sequestration as part of a climate solution.

Carbon sequestration is the process of capturing CO2 — a greenhouse gas that traps heat in the Earth’s atmosphere — from the air or where it is produced and storing it underground. However, there are some technical challenges with carbon sequestration, including making sure that the CO2 remains underground long term. Sandia’s wireless device pairs with tiny sensors to monitor for CO2 leaks and tell above-ground operators if one happens — and it lasts for decades.

“The world is trying a whole lot of different ways to reduce the production of CO2 to mitigate climate change,” said Andrew Wright, Sandia electrical engineer and project lead. “A complementary approach is to reduce the high levels of CO2 in the atmosphere by collecting a good chunk of it and storing it deep underground. The technology we’re developing with the University of Texas at Austin aims to determine whether the CO2 stays down there. What is special about this technology is that we’ll be monitoring it wirelessly and thus won’t create another potential path for leakage like a wire or fiber.”

Monday, December 12, 2022

Sandia, Intel seek novel memory tech to support stockpile mission

Developed at Sandia National Laboratories, a high-fidelity simulation of the hypersonic turbulent flow over a notional hypersonic flight vehicle, colored grey, depicts the speed of the air surrounding the body, with red as high and blue as low. The turbulent motions that impose harsh, unsteady loading on the vehicle body are depicted in the back portion of the vehicle. Accurately predicting these loads are critical to vehicle survivability, and for practical applications, billions of degrees of freedom are required to predict physics of interest, inevitably requiring massive computing capabilities for realistic turnaround times. The work conducted as part of this research and development contract targets improving memory performance characteristics that can greatly benefit this and other mission applications.
Simulation Credit: Cory Stack

In pursuit of novel advanced memory technologies that would accelerate simulation and computing applications in support of the nation’s stockpile stewardship mission, Sandia National Laboratories, in partnership with Los Alamos and Lawrence Livermore national labs, has announced a research and development contract awarded to Intel Federal LLC, a wholly owned subsidiary of Intel Corporation.

Funded by the National Nuclear Security Administration’s Advanced Simulation and Computing program, the three national labs will collaborate with Intel Federal LLC on the project.

“ASC’s Advanced Memory Technology research projects are developing technologies that will impact future computer system architectures for complex modeling and simulation workloads,” said ASC program director Thuc Hoang. “We have selected several technologies that have the potential to deliver more than 40 times the application performance of our forthcoming NNSA Exascale systems.”

Sandia project lead James H. Laros III, a Distinguished Member of Technical Staff, said “this effort will focus on improving bandwidth and latency characteristics of future memory systems, which should have a direct impact on application performance for a wide range of ASC mission codes.”

Fossil-Sorting Robots Will Help Researchers Study Oceans, Climate


Researchers have developed and demonstrated a robot capable of sorting, manipulating, and identifying microscopic marine fossils. The new technology automates a tedious process that plays a key role in advancing our understanding of the world’s oceans and climate – both today and in the prehistoric past.

“The beauty of this technology is that it is made using relatively inexpensive off-the-shelf components, and we are making both the designs and the artificial intelligence software open source,” says Edgar Lobaton, co-author of a paper on the work and an associate professor of electrical and computer engineering at North Carolina State University. “Our goal is to make this tool widely accessible, so that it can be used by as many researchers as possible to advance our understanding of oceans, biodiversity and climate.”

The technology, called Forabot, uses robotics and artificial intelligence to physically manipulate the remains of organisms called foraminifera, or forams, so that those remains can be isolated, imaged and identified.

Forams are protists, neither plant nor animal, and have been prevalent in our oceans for more than 100 million years. When forams die, they leave behind their tiny shells, mostly less than a millimeter wide. These shells give scientists insights into the characteristics of the oceans as they existed when the forams were alive. For example, different types of foram species thrive in different kinds of ocean environments, and chemical measurements can tell scientists about everything from the ocean’s chemistry to its temperature when the shell was being formed.

Saturday, December 10, 2022

Hummingbird flight could provide insights for biomimicry in aerial vehicles

Hummingbirds have extreme aerial agility and flight forms, which is why many drones and other aerial vehicles are designed to mimic hummingbird movement. Using a novel modeling method, researchers gained new insights into how hummingbirds produce wing movement, which could lead to design improvements in flying robots.
Photo Credit: Zdeněk Macháček

Hummingbirds occupy a unique place in nature: They fly like insects but have the musculoskeletal system of birds. According to Bo Cheng, the Kenneth K. and Olivia J. Kuo Early Career Associate Professor in Mechanical Engineering at Penn State, hummingbirds have extreme aerial agility and flight forms, which is why many drones and other aerial vehicles are designed to mimic hummingbird movement. Using a novel modeling method, Cheng and his team of researchers gained new insights into how hummingbirds produce wing movement, which could lead to design improvements in flying robots.

Their results were published this week in the Proceedings of Royal Society B.

“We essentially reverse-engineered the inner working of the wing musculoskeletal system — how the muscles and skeleton work in hummingbirds to flap the wings,” said first author and Penn State mechanical engineering graduate student Suyash Agrawal. “The traditional methods have mostly focused on measuring activity of a bird or insect when they are in natural flight or in an artificial environment where flight-like conditions are simulated. But most insects and, among birds specifically, hummingbirds are very small. The data that we can get from those measurements are limited.”

Wednesday, December 7, 2022

Wearable sensor could guide precision drug dosing

 The sensor uses microneedles that are made by cutting down clinical-grade acupuncture needles.
Image Credit: Emaminejad Lab/UCLA

For some of the powerful drugs used to fight infection and cancer, there’s only a small difference between a healing dose and a dose that’s large enough to cause dangerous side effects. But predicting that margin is a persistent challenge because different people react differently to medications — even to the same dose.

Currently, doctors can calibrate the amount of medication they administer in part by drawing blood to test the amount of medicine in a patient’s body. But results from those tests often take a day to process and only measure dosage at one or two moments in time, so they don’t help much when determining how to adjust dosage amounts in real time.

Now, a UCLA-led research team has developed a wearable patch that uses inexpensive microneedles to analyze the fluid between cells less than a millimeter underneath the skin and continuously record concentrations of medicine in the body. The technology could be a step toward improving doctors’ ability to administer precise medication doses.

In a study published in Science Advances, the investigators tested the system in rats that had been treated with antibiotics. Using data taken by the device within about 15 minutes after the medication was administered, the researchers reliably forecast how much of that drug would be effectively delivered to the animal’s system in total.

Tuesday, December 6, 2022

Researchers propose new structures to harvest untapped source of freshwater

“Eventually, we will need to find a way to increase the supply of fresh water as conservation and recycled water from existing sources, albeit essential, will not be sufficient to meet human needs. We think our newly proposed method can do that at large scales,” said Illinois professor Praveen Kumar. The illustration shows Kumar and his co-authors’ proposed approach for capturing moisture above ocean surfaces and transporting it to land for condensation. 
Illustration Credit: Courtesy Praveen Kumar and Nature Scientific Reports

Researchers said that an almost limitless supply of fresh water exists in the form of water vapor above Earth’s oceans, yet remains untapped. A new study from the University of Illinois Urbana-Champaign is the first to suggest an investment in new infrastructure capable of harvesting oceanic water vapor as a solution to limited supplies of fresh water in various locations around the world.

The study, led by civil and environmental engineering professor and Prairie Research Institute executive director Praveen Kumar, evaluated 14 water-stressed locations across the globe for the feasibility of a hypothetical structure capable of capturing water vapor from above the ocean and condensing it into fresh water – and do so in a manner that will remain feasible in the face of continued climate change.

Kumar, graduate student Afeefa Rahman and atmospheric sciences professor Francina Dominguez published their findings in the journal Nature Scientific Reports.

Monday, December 5, 2022

How to Edit the Genes of Nature’s Master Manipulators

Scientists are using CRISPR to engineer the viruses that evolved to engineer bacteria
Illustration Credit: Davian Ho

CRISPR, the Nobel Prize-winning gene editing technology, is poised to have a profound impact on the fields of microbiology and medicine yet again.

A team led by CRISPR pioneer Jennifer Doudna and her longtime collaborator Jill Banfield has developed a clever tool to edit the genomes of bacteria-infecting viruses called bacteriophages using a rare form of CRISPR. The ability to easily engineer custom-designed phages – which has long eluded the research community – could help researchers control microbiomes without antibiotics or harsh chemicals, and treat dangerous drug-resistant infections. A paper describing the work was recently published in Nature Microbiology.

“Bacteriophages are some of the most abundant and diverse biological entities on Earth. Unlike prior approaches, this editing strategy works against the tremendous genetic diversity of bacteriophages,” said first author Benjamin Adler, a postdoctoral fellow in Doudna’s lab. “There are so many exciting directions here – discovery is literally at our fingertips!”

Bacteriophages, also simply called phages, insert their genetic material into bacterial cells using a syringe-like apparatus, then hijack the protein-building machinery of their hosts in order to reproduce themselves – usually killing the bacteria in the process. (They’re harmless to other organisms, including us humans, even though electron microscopy images have revealed that they look like sinister alien spaceships.)

Ural Chemists Improved Material for Fuel Cells

Scientists were able to identify the optimal amount of iron administered.
Photo Credit: Ilya Safarov

Chemists at Ural Federal University and the Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences have improved a material for high-performance electrochemical devices. Such materials are used as electrodes in solid oxide fuel cells (SOFC) or proton-ceramic fuel cells (PCFC). Scientists proposed the infiltration method as a simple and affordable way to improve electrochemical performance. Their method increased the conductivity of this material, consequently improving the performance (increased power) of fuel cells. The change now makes the reaction go faster. The material and method are described in the journal Catalysts.

In the course of their research, chemists introduced iron into the basic barium cerate-zirconate, which means that they added iron ions to the complex oxide perovskites. In this way they were able to obtain a high level of mixed ion-electron conductivity, which is necessary for good electrodes. Similar materials exist today, but scientists around the world are trying to optimize them-improving their properties to increase efficiency.

Consortium develops sustainable aircraft engines

Flying without pollutant emissions should be possible in the future.
Photo Credit: RUB, Marquard

A new drive technology should make air travel possible with a clear conscience.

In the face of climate change, many people get on the plane with a guilty conscience: the emission of climate-damaging carbon dioxide from the combustion of fossil fuels is high. An international consortium wants to change this: The aim of the "MYTHOS" project is to develop aircraft engines that can flexibly use various sustainably produced fuels up to pure hydrogen. The project called "Medium-range hybrid low-pollution flexi-fuel / hydrogen sustainable engine" will start from 1. January 2023 funded by the European Union for four years. The coordination is carried out by Prof. Dr. Francesca di Mare, holder of the professorship for thermal turbo machines and aircraft engines of the RUB.

The overarching goal to which the project team is committed is nothing less than the decarbonization of aviation. "We will be developing and demonstrating a groundbreaking design methodology for future short and medium-range civil engines that can use a wide range of liquid and gaseous fuels and ultimately pure hydrogen," said Francesca di Mare. The fuels for which the engines are to be designed include so-called Sustainable Aviation Fuels, or SAF for short: sustainably produced fuels that are not based on fossil fuels. In order to achieve these goals, the MYTHOS consortium develops a multidisciplinary modeling approach for the characterization of the relevant engine components and uses methods of machine learning.

Featured Article

Hypoxia is widespread and increasing in the ocean off the Pacific Northwest coast

In late August, OSU's Jack Barth and his colleagues deployed a glider that traversed Oregon’s near-shore waters from Astoria to Coos Bay...

Top Viewed Articles