. Scientific Frontline

Thursday, November 20, 2025

5,500 toxic sites in U.S. at risk of flooding because of sea level rise

U.S. face rising flood risks due to sea-level rise.
Photo Credit: Wes Warren

More than 5,500 hazardous sites across the U.S. are projected to be at risk of coastal flooding by 2100, according to newly published research led by University of California scientists.

The researchers found that if heat-trapping pollution grows unchecked, rising sea levels will flood a wide range of sites, including facilities that handle sewage, toxic waste, oil and gas, and other industrial pollutants, posing serious threats to public health and neighboring communities. The peer-reviewed study — Sea level rise and flooding of hazardous sites in marginalized communities across the United States – was just published in the London-based scientific journal Nature Communications

Innovation turns building vents into carbon-capture devices

A carbon nanofiber-based direct air capture filter developed by the University of Chicago Pritzker School of Molecular Engineering could turn existing building ventilation systems into carbon-capture devices while cutting homeowners’ energy costs. Through life cycle assessment, the air filter shows a carbon removal efficiency of 92.1% from cradle to grave.
Photo Credit: Elaina Eichorn

With a newly developed nanofiber filter, air conditioners, heaters and other HVAC systems could remove airborne carbon dioxide while cutting energy costs

A nanofiber air filter developed at the University of Chicago could turn existing building ventilation into carbon-capture devices while cutting homeowners’ energy costs.

In a paper recently published in Science Advances, researchers from the lab of Asst. Prof. Po-Chun Hsu in the Pritzker School of Molecular Engineering (UChicago PME) developed a distributed carbon nanofiber direct air capture filter that could potentially turn every home, office, school or other building into a small system working toward the global problem of airborne carbon dioxide.

A life-cycle analysis shows that—even after factoring this extra CO2 released by everything from manufacture and transportation to maintenance and disposal—the new filter is more than 92% efficient in removing the gas from the air.

Customised cells to fight brain cancer

Visualisation of cell death induced by CAR-T cells. A real-time imaging experiment (images taken at 0, 5 and 10 minutes) shows a CAR-T cell in contact with a glioblastoma cell (artificially marked in green). This contact causes the CAR-T cell to concentrate granules (lytic granules, shown in pink) containing the proteins necessary for the death of the target cell. These proteins penetrate the cancer cell and induce its death. After 10 minutes, the cancer cell begins to die, as indicated by the loss of its structure (evidenced by the appearance of "bubbles").
Image Credit: © Denis Migliorini

With a five-year survival rate of less than 5%, glioblastoma is one of the most aggressive types of brain cancer. Until now, all available treatments, including immunotherapy — which involves strengthening the immune system to fight cancer— have proved disappointing. CAR-T cells are genetically modified immune cells manufactured in the laboratory and designed to identify and destroy cancer cells. By targeting a protein present in the tumor environment, a team from the University of Geneva (UNIGE) and the Geneva University Hospital (HUG) has developed CAR-T cells capable of destroying glioblastoma cells. Their efficacy in an animal model of the disease paves the way for clinical trials in humans. These results are published in the Journal for ImmunoTherapy of Cancer

New type of DNA damage found in our cells’ powerhouses

Linlin Zhao (left) and Yu Hsuan Chen
Photo Credit: Courtesy of University of California, Riverside

A previously unknown type of DNA damage in the mitochondria, the tiny power plants inside our cells, could shed light on how our bodies sense and respond to stress. The findings of the UC Riverside-led study are published in the Proceedings of the National Academy of Sciences and have potential implications for a range of mitochondrial dysfunction-associated diseases, including cancer and diabetes. 

Mitochondria have their own genetic material, known as mitochondrial DNA (mtDNA), which is essential for producing the energy that powers our bodies and sending signals within and outside cells. While it has long been known that mtDNA is prone to damage, scientists didn't fully understand the biological processes. The new research identifies a culprit: glutathionylated DNA (GSH-DNA) adducts.

An adduct is bulky chemical tag formed when a chemical, such as a carcinogen, attaches directly to DNA. If the damage isn’t repaired, it can lead to DNA mutations and increase the risk of disease.

‘Worms in space’ experiment aims to investigate the biological effects of spaceflight

Petri Pod
Photo Credit: University of Exeter

A crew of tiny worms will be heading on a mission to the International Space Station in 2026 that will help scientists understand how humans can travel through space safely, using a Leicester-built space pod. The experiment is based upon a concept and early development by the University of Exeter over more than 8 years 

A team of scientists and engineers at Space Park Leicester, the University of Leicester’s pioneering £100 million science and innovation park, have designed and built a miniature space laboratory called a Petri Pod, based around the principle of the biological culture petri dish invented in 1887 and based upon earlier development work by the University of Exeter and Leicester, that will allow scientists on Earth to study biological organisms in space. 

There is a burgeoning global drive for humans to colonize space, the Moon, and other planets of our Solar System, but one of the challenges is the harmful effects of extended exposure to the effects of the space environment on human physiology. This includes microgravity which can lead to bone and muscle loss, fluid shift, and vision problems in humans as well as radiation-induced effects of genetic damage, increased cancer risk, etc. 

Rocks on Faults Can Heal Following Seismic Movement

At the Cascadia subduction zone in the Pacific Northwest, one tectonic plate is moving underneath another. New experimental work at UC Davis shows how rocks on faults deep in the Earth can cement themselves back together after a seismic movement, adding to our knowledge of how these faults behave.
Photo Credit: of Otter Rock, Oregon by USGS

Earthquake faults deep in the Earth can glue themselves back together following a seismic event, according to a new study led by researchers at the University of California, Davis. The work, published in Science Advances and supported by grants from the National Science Foundation, adds a new factor to our understanding of the behavior of faults that can give rise to major earthquakes. 

“We discovered that deep faults can heal themselves within hours,” said Amanda Thomas, professor of earth and planetary sciences at UC Davis and corresponding author on the paper. “This prompts us to reevaluate fault rheological behavior, and if we have been neglecting something very important.” 

How plants search for nutrients

In the case of nutrient deficiency, efficient plants are able to grow long, lateral roots to broaden the radius from which they can take nutrients.
Photo Credit: Andreas Heddergott / Technische Universität München

What makes plants tolerant to nutrient fluctuations? An international research team led by the Technical University of Munich (TUM) and involving the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) has investigated this question on the micronutrient boron. The researchers analyzed 185 gene data sets from the model plant Arabidopsis. Their goal is to then be able to transfer the findings to the important crop plant rapeseed. 

Boron is one of the key micronutrients for the growth and fertility of many plants. However, extreme weather events reduce the availability of this nutrient: drought reduces boron uptake, while flooding washes the nutrient out of the soil – less boron reaches the plants. In the context of climate change, this deficiency represents an additional stressor for plants. Their tolerance to these fluctuations is a decisive factor in determining their yields. 

Study shows waste cardboard is effective for power generation

Photo Credit: Jon Moore

A new study has shown for the first time that waste cardboard can be used as an effective source of biomass fuel for large scale power generation. 

Engineers from the University of Nottingham have provided the first comprehensive characterization of cardboard as a potential fuel source and created a new method to assess the composition of the material providing a practical tool for fuel assessment for cardboards. The study has been published in the journal Biomass and Bioenergy

Wednesday, November 19, 2025

Human biology is ill-adapted to modern cities

A new study has found that modern cities are having a huge impact on our health and wellbeing.
Photo Credit: Patrick Robert Doyle

Researchers from Loughborough University and the University of Zurich found that rapid industrialization has reshaped human habitats so dramatically that our biology may no longer be able to keep up. 

The paper, published in Biological Reviews, highlights that densely populated, polluted, and industrialized environments are impairing core biological functions essential for survival and reproduction (i.e., the ‘evolutionary fitness’ of our species). 

Scientists observe metabolic activity of individual lipid droplets in real time

LipiPB Red shows longer fluorescence lifetimes in stable lipid droplets (red) and shorter lifetimes as they undergo degradation (blue). This probe revealed that lipid droplets sequentially degrade, where lipolysis precedes lipophagy.
Image Credit: Issey Takahashi, Nagoya University

A research team has developed a fluorescent probe that allows scientists to visualize how individual lipid droplets break down inside living cells in real time. The probe changes its fluorescence properties depending on the chemical composition of each droplet, which allows researchers to observe not only their location within cells, but also their metabolic activity during lipid breakdown. The findings, published in the Journal of the American Chemical Society, may contribute to the development of new strategies to treat metabolic diseases such as obesity and diabetes, as well as cancers associated with abnormal lipid metabolism. 

“Lipid droplets are cellular organelles that not only store excess lipids but also play critical roles in lipid metabolism. However, understanding how individual droplets function has been challenging,” Professor Shigehiro Yamaguchi, from the Institute of Transformative Bio-Molecules (ITbM) at Nagoya University, explained. 

Featured Article

Researchers link Antarctic ice loss to ‘storms' at the ocean's subsurface

Mattia Poinelli, a UC Irvine postdoctoral scholar in Earth system science and NASA JPL research affiliate, outlines in a newly published stu...

Top Viewed Articles